A LARGE SCALE HMM-BASED OMNI FONT-WRITTEN
OCR SYSTEM FOR CURSIVE SCRIPTS

by
Mohamed Saad Mostafa EI-Mahallawy

A Thesis Submitted to the
Faculty of Engineering, Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in
ELECTRONICS & ELECTRICAL COMMUNICATIONS

Faculty of Engineering, Cairo University
Giza, Egypt
April 2008

A LARGE SCALE HMM-BASED OMNI FONT-WRITTEN
OCR SYSTEM FOR CURSIVE SCRIPTS

by
Mohamed Saad Mostafa EI-Mahallawy

A Thesis Submitted to the
Faculty of Engineering, Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

n
ELECTRONICS & ELECTRICAL COMMUNICATIONS

Under the Supervision of

Mohsen Abdul Raziq Ali Rashwan Mohamd Waleed Talaat Fakhr
Professor Professor
Faculty of Engineering Faculty of Engineering
Cairo University Arab Academy for Science and Technology and

Maritime Transport

Faculty of Engineering, Cairo University
Giza, Egypt
April 2008

A LARGE SCALE HMM-BASED OMNI FONT-WRITTEN
OCR SYSTEM FOR CURSIVE SCRIPTS

by
Mohamed Saad Mostafa El-Mahallawy

A Thesis Submitted to the
Faculty of Engineering, Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

n
ELECTRONICS & ELECTRICAL COMMUNICATIONS

Approved by the
Examining Committee:

Prof. Dr. Mohsen Abdel-Razeq Rashwan, Thesis Advisor

Prof. Dr. Mohamed Waleed Talaat Fakhr, Thesis Advisor

Prof. Dr. Magdy Fekry Ragae , Member

Prof. Dr. Samia Abdel-Razeq Mashaly , Member

Faculty of Engineering, Cairo University
Giza, Egypt
April 2008

ej@;ibhli,ﬂ‘i\ﬁﬁ&d\w\%m\ <l gagaill A gdal) i pill a ga allai
4a8aal) oS jla M aladialy

dAac)
gl dhaa s dana
3_ALAN dxala cdunigh 408) daaie Allu
o)y sisal) A o o J guaad) ciludlia (£ 3

&
A sl el 5 il g Y dwnia

5 Al dala ¢ Auarigll 4
Aial) pae) sean 3
2008 Ji!

ey\Jhlﬁgy\W\M\%Gﬁ\ Q\Suayamga‘y'al\ < il a ga allaS
48l oS Jla Ml aladialy

Aae)
sl Al drw dasa
t:‘JJﬁSﬁ\aA.JJ‘;Jde\QMCp;J'QS

o
Lo Sl LAy g e g) Awaia

al i) Caal

Abcalk oyt Ol @I 1o G
L 51 5 il al) IS vac VLAY 5 il 5 IV Atia auy St
L 515501 a phel) iy yel) sl 5Ll fadls ¢ Aaiell A
o Jal

5 Al Gadls ¢ Aaiell 2S
Aal) rae) sean 3
2008 Ji !

ey\Jth\W\M\QUﬁ\ Q\Suayamga‘y'al\ i il a ga allaS
48] oS jla Ml aladialy

e
gl Al drw dasa
B_aLAN daaly cdunigh) 408 1) dadie Allu
ob‘gﬁs.ﬁ\;\eJJuﬁc Jgarll QL)SHAOAQJ@S

o
A sl el g il gAY dwaia

roaieal) dial (e Adlay

Snll e Gl olsE GO ue (s /) 53S0 ALY
Gl e (o piall Al Call 2l g e /) si€all Y
) gac S S8 (ana /58 LYY

| gucac Hhia (3310 e dpalis /5 sl 330ELY)

5l aala ¢ Aoigll IS
Aal) pae dy)sean ¢35
2008 Ji!

Table of Contents

LISt OF T@DIES ..o
LIST OF FIQUIES. ...t
List Of ADDIeVIAtIONS.. ..o
ACKNOWIEAGEMENTS.......cooii e
ADSTFACT.o
L. INErOAUCTION ..o
1.1. Character Recognition Systems Capabilities. ...,
1.1.1. ON-LiNE SYSIEMS.ovvviiririieiesisisesee s

1.1.2. OFfline SYSIEMS.oviiiiiiiiie e

1.2. Character Recognition Technology Applications...........c.ccocovvvvnrrneinneenn.

1.3 Arabic OCR TeChnologyccccoooiiiiiiiii e
1.4. Arabic OCR Challenges.c.oouviiiiiiii i,
1.5. Arabic OCR Text Recognition SYStem.ccccccoveveevirreiecisiieeiesese s
1.6. TheSiS ODJECLIVES.coocivieieeieceec e
1.7. Thesis CONtrIDULIONS...........cooiirree e
1.8. TheSiS OULIINES. ..o

2. Methodologies of OCR Systems; Theory and Literature Survey.............
2.1. IMage ACQUISITION. ..ot

2.2. PrEPIOCESSING. .. .eeeiiirriieeiieiseeseeeeeseses ettt
2.2. 1. BINATIZALION ...

2.2.2. NOISE REAUCTION. ...

2221 FItering. ...oooooiii e

2.2.2.2. SMOOTNING. ..ooviiiiiiiiii i

2.2.3. NOIMANIZALION. ..o

2.2.3.1. Slant Normalization............cconinenrinineeeessenens

2.2.3.2. Size NOormalization...........cccooninincniei e,

2.2.4. Skew Detection and CorreCtion.ccccoeomvenrnineineisinssessone,

2.2.5. Thinning and Skeletonization. ...,

2.2.6. Page DeCOMPOSILION.cc.cccvveviriiiiecieiciecee e

2.3. SEGMENTALION. ...t 18

2.3.1 EXPlicit SEgMENtAtioN.ccocoivvriieiiseisseeeiseisees e 19
2.3.2 Implicit SEgMENTALION.cooveiviiieceee e 20
2.4, Feature EXIraCtioN. ... s 20
2.4.1. StruCtural FEALUIES.covieeieceeeee s s 21
2.4.2. StatistiCal FEATUIESc.ccovvevieieece s e 22
2.4.3. Global Transformations..............coonrinnnnnees e 23
2.5, ClaSSITICALION. ... s 24
2.5.1. Template MatChing.ccccoooviniriiee e 25
2.5.2. Statistical Techniques (Decision Theoretic). ... 26
2.5.2.1 Nonparametric Recognition.ccccoecvevvevevvsrseiiscsieeinne, 26
2.5.2.2. Parametric ReCOgnItion.cccccccoeveeverieiiee e e 27
2.5.2.3. Hidden Markov Modelingccooicncncnccncnninecn. 27
2.5.3. Syntactic (Structural) TEChNIQUES.cccccoovimrvnrrrereeeine, 28
2.5.4. NeUural NETWOTKS.ccc.covriirieninece et 29
2.5.5. Hybrid APProaches.cccccveiiiieiieeieiie e e e 30
2.6. POSE-PIOCESSING. ..ot s 30
2.7. Machine-Printed ArabiC OCR SUIVEY. ..o 31
3. Arabic Lines and Words DecoOmMpPOSItioN...........cccco..coomvvveoenreeecissereeisseeeeisnen 34
3.1. Enhanced Histogram-Based Lines & Words Decomposition -

AlGOTTENM. s
3.1.1. Step 1; FIEriNG. ..o 36
3.1.2. Step 2; Getting the Darkness & Brightness Centroids. 36
3.1.3. Step 3; Writing-Lines DecompoSItion.c.ccccoemrineincrnenninnn. 37
3.1.3.1. Step 3.1, Physical Writing-Lines Decomposition. 37
3.1.3.2. Step 3.2; Logical Writing-Lines Decomposition. 39
3.1.4. Step 4; Writing-Lines Grouping.cccccoeveveevvsreerssrsessissississonn, 40
3.1.5. Step 5; Part-of-Words Decomposition.cccoeeninrincernenninn. 41
3.1.6. Step 6; Full Words Concatenation. ... 41
3.1.6.1. Step 6.1; Eliminating Rogue Spaces Among Part-of- 1

WOTAS. ..o
3.1.6.2. Step 6.2; Clustering Inter-word/Intra-Word Spaces. 43
3.2. Decomposition Algorithm Evaluation. ..., 44

4. Autonomously Normalized Horizontal Differential Features
EXTFACTION. ...
4.1. ANHDF BaSIC [UBA.ovvreirrirrieciressieese e e
4.2. ANHDF Design ReqUIrEMENLS.cc.coovivviveieiieiecisse e e
4.3. ANHDF VeCtors DESIN. ..o e
4.4, FeaturesS NOrmalization. ... s
5. Vector Quantization and CIUSEEFING........cc.coorirnrineiseee e,
5.1, TFAINING SEL. ..ot e
5.2. DIStANCE IMBASUIE. ...t et
5.3. Centroid COMPULALION.c..ovviierririieiseiseieiise s e
5.4. Clustering AlQOrithm. ...
5.4.1. K-Means Algorithm.cccccocviiiiciiceceeeeeeee e
5.4.2. LBG AIGOMtNM. ..ot
5.5, CIUSEEIS ANGIYSISttt s s
5.6. The AdEQUACY TESL. ...
6. HMM from ASR t0 OCR........coocoiiiieesce s
6.1. ASR and OCR Problems ANalogy. ... e
6.2. Theory and Elements of Discrete HMM. ...,
6.3. HMM TOPOIOGIES. ..o e
6.4. The Basic Problems of HMIMS............cooonnnsssessenesesenns
6.4.1. Model Evaluation Problem. ...,
6.4.2. Training ProbIEM.........cccoiic s
6.4.2.1. Baum-Welch Re-Estimation Procedure..............ccocu....
6.4.2.2. Initialization ProCedures............ccurnrrnnrinenseneinnnenns
6.4.3. Decoding Problem........cc.cccoiiieeiicececceee e
7. Statistical Language Models and Character Recognition.........................
7.1. Statistical Language MOGEIS ... e
7.2. N-Gram Language MOdEIS.ccccoocvrirrniiicieieecse e,
7.3. The Language Phenomenon from a Statistical Perspective.............ccccccc.covevnee
7.4. Maximum Likelihood Probability Estimation.............con,
7.5. “Bayes’, Good-Turing Discount, Back-Off” Probability Estimation....
7.6. Arabic Ligature Bigram SLM...............ooicseeeeeseeses
7.7. NEMLAR Arabic Written COIPUS.........ccccovoivvereeierieiecisss e,

46

47
48
49
52
54
55
55
56
56
57
58
59
61
80
80
84
85
86
87
88
88
88
89
92
03
03
94
96
97
08
99

8. Arabic OCR System; Implementation and Evaluation.................ccccccoec...... 101

8.1. HMM-Based OCR System ArChiteCture..........cccoovmrnrinnri e s 101
8.1.1. Digital SCANNING.ovvviviieicsciece s 104
8.1.2. Primary NOise HandIer.............cccoocivireeieiieseceeeeeeeessesens 104
8.1.3. Words & Lines DECOMPOSENocrimreeirienrineireiieiseeieessisenenes 104
8.1.4. Features Extraction ModUle.............ccccooeniviinrniisincieeseeeene 105
8.1.5. Vector Clustering and Quantization Modules......................... 105
8.1.6. Dynamic Range Normalization Parameters Estimator............... 106
8.1.7. Characters-to-Ligature CONVEIter. ... 106
8.1.8. Discrete HMM TTaiNer..........cccoviirinieieeieeeiseisesssesesiesssssseninns 106

8.1.8.1. HMM Initializationc..ccccoo e 107
8.1.8.2. HMM Re-Estimation Embedded Training..............ccccoc...... 108
8.1.9. Discrete HMM RECOQNIZEcooiinririeireieeeineieeseeseeeeieene. 108
8.1.10. Ligature n-Grams Probability Estimator ..., 109
8.1.11. Ligature -to-Character CONVErter..........c.cooovevervnirereeirerrsinnns 109

8.2. Arabic Font-Written Database...o 109

8.3. Evaluation EXperiments SEtUP.o 112
8.3.1. Training Phase SEUP. ..o 112
8.3.2. TesSting PNASe SELUP.......ccovrrrrreeirieeieesessiissiseieess st 113
8.3.3. System Parameters SETUP. ..o 115
8.3.4. System EValUAtioN..........c..cccovvivecieeeeceeee s 116

8.4. Experimental Error AnalysiS...............ccoco it i, 118

9. Conclusion and FULUIe WOTK..........cccooinsssseesss oo 121
RETEIEINCES. ..ot 124

2.1:
2.2:
3.1
7.1:
7.2.
8.1:
8.2:
8.3:
8.4:
8.5:

8.6:
8.7:

List of Tables

Page
Classification strategies, Holistic vs. AnalytiC................cocoeiiiiiiiiiiiciiieinn, 25
Classification approaches Comparison.............ccoceeeeiiiiiiiiiiiiiiecee e e 29
The proposed decomposition algorithm evaluation results.......................... 45
NEMLAR Arabic Written Corpus Categories.............cooeeeeeevviuvneriiee e, 99

Correct words versus Corrupted words probabilities computed by the LM.. 100

Visual features description of the fonts used in training and testing............ 110
HMM parameters SEtting..........ooooi oo 116
Experimental reSults.............ooooiiiiiii i 116
Error analysis of assimilation test regarding font shape/size...................... 118
Error analysis of generalization test regarding font shape/size................... 118
Assimilation test most frequent MiStakes.............coccvvvviiiiiiiiiiiiee e 119
Generalization test most frequent MiStakes.cccccveviiiiiiiieie e, 119

Vi

1.1:

1.2:

1.3:

1.4:

1.5:

1.6:

1.7:

1.8:

2.1:

3.1:

3.2:

3.3:

3.4:

3.5:

3.6:

3.7:

3.8:

3.9:

4.1:

List of Figures

Character recognition capabilities................ccccoovvieiiiiiiniii
Grapheme segmentation PrOCESS..........cccooviiiiiiiiiiiieee e e
Example sets of dotting-differentiated graphemes..................c..ccoeei,
Grapheme “Ein” in its 4 positions; Starting, Middle, Ending & Separate...
Some ligatures in the Traditional Arabic font..................c..ccoiiin
Some overlapped Characters in Demashqg Arabic font...............................
Arabic text With diaCritiCS.............oiviiiii i e,
Typical Components of an OCR-SYStemM..........ccocoeeviiiiiiiiiiiiii e,
Results of removing noise from a text image using median filter
Sample Arabic text rectangle bitmap.............ccccvvi i,
Sample text rectangle bitmap after median filtering..................................
Gray values histogram of the pixels population of the sample text
FECTANGIE. .. e
Sample text rectangle bitmap after initial lines decomposition.
Sample text rectangle bitmap after refined lines decomposition..................
Sample text rectangle bitmap after logical writing lines concatenation.......
Sample text rectangle bitmap after part-of-words decomposition...............
A hypothetical histogram of intra-word, inter-word, and rogue part-of-
WOTA SPACES.t et eet ittt ettt ettt e et e e e ettt te e e e e e e
Sample text rectangle bitmap after full words concatenation.....................
Word slice and SEGMENTSuii i

vii

Page

14
35

36

37

38
39
39

41

42

4.2: Feature extraction algorithm flowchart.....................coo 51

4.3: Feature values density distributions.ccocooc i 52
5.1: A two dimensional space showing samples with their representative 56
(01=] 1 (0] [o TSP PP UPPPPPPPPPRPPS
5.2: LBG Centroid Splitting...........coooiiiiiiiiiece e 59
5.3: A two dimensional data with its normalized mean square error function..... 60

5.4: a) Normalized Features density distributions projected on d=1;

b) Normalized Code book (size 128) density distribution projected on d=1. 62

5.5-5.20: Normalized Features density distributions with its Codebooks (of 64-
sizes 2048, 1024, 512, 256) density distributions projected on d=1,....,16. 79

6.1: Sliding window over a speech signal and over a text image bitmap............ 81
6.2: Noisy channel communication model...................ccccoiiiiii e, 82
6.3: Ergodic Hidden Markov Model.............cccoooeeiiiiiiiiiiiii e, 85
6.4: An Example of Left-to-Right HMMS.............coooooiiiii i 86
6.5: HMM search trellis for graphemes recognition...............ccccoo i 90
7.1: The attenuating correlation phenomenon.cccoeeiii e 94
7.2: Zipf’s curve; ranking entities by their frequencies................ccccocei i, 95
8.1: Discrete HMM-based ASR system block diagram....................ccccooeinn 102
8.2: Discrete HMM-based OCR system block diagram.c.coen 103
8.3. Sample text rectangle bitmap. ... 105
8.4. Sample text rectangle bitmap after lines and words decomposition............. 105
8.5: Characters-to-Ligatures conversion example................ocoeeiiii 106
8.6: Viterbi training flowchart...............c 107
8.7: Baum-Welch training flowchart................coooiiiii i 107
8.8: Arabic Ligatures set used in the OCR SyStem............ccccoeiiiiiiii i 111
8.9: Samples of fonts MS-Windows used in training............cccccvvvveieeieeieneenenn, 112

viii

8.10: Samples of Mac. fonts used in training..............cccoeiiiiiiii i 113

8.11: Samples of fonts used in the generalization tests.............cccccocevvviiiiininnn. 114
8.12: System performance using different codebook size................ccc.cccocvv, 115
8.13: Number of states per model versus system performance........................ 116

List of Abbreviations

Al: Artificial Intelligence

ANHDF Autonomously Normalized Horizontal Differential Features

ASCII: American Standard Code for Information Interchange
ASR Automatic Speech Recognition

B&W Black & White

BBN Bolt Beranek and Newman's

BMP Bitmap

DNRP Dynamic Range Normalization Parameters
EC European Commission

FD Fourier Descriptor

HMM Hidden Markov Model

ICR Intelligent Character Recognition

IF Information Technology

IR Information Retrieval

KM Knowledge Management

LBG Linde, Buzo, and Gray

MAP maximum a posteriori probability

MFCC Mel Frequency Cepstral Coefficient

ML Maximum Likelihood

NEMLAR Network for Euro-Mediterranean LAnguage Resource
NN Neural Network

NLP Natural Language Processing

OCR Optical Character Recognition

pdf probability density function

R&D Research and Development

RDI Research & Development International company
SLM Statistical Language Model

WER Word Error Rate

VQ Vector Quantization

Acknowledgements

Most of all, I wish to express my deepest appreciation to my supervisor, Prof.
Mohsen A. A. Rashwan, for his guidance in the preparation of this work. He was the
first to hear about, and comment on, the innovations that constitute the substance of
this thesis. | have been able to rely with confidence on his extensive expertise in the
field.

Secondly, | would like to express my gratitude to my supervisor, Prof.
Mohamed Waleed Fakhr who introduced me to the key concepts of the problems
involved in this thesis.

It is my pleasure to acknowledge the support from The Engineering Company
for the Development of Computer Systems; RDI www.rdi-eg.com where this work has
been adopted and supported for the last two years in my Ph.D. study. The continuous
support and encouragement from the people in RDI are also greatly appreciated.

I am greatly indebted to Dr. Mohamed Attia, the human language technologies
consultant at RDI, for his constructive comments and valuable suggestions on my
dissertation. It has been a great pleasure to conduct my research under his guidance
with his remarkable ideas and his generous efforts and patience.

Above all, I am immensely grateful to my parents, brother and my sister-in-
law for their continuous support and encouragement throughout this study.

Finally and the most importantly, this study could not have been accomplished
without the unfailing love and dedication of my wife who has shared me in the
delights and grieves of this research and writing process. She deserves to be named on
the dedication of this dissertation along with my lovely daughters, Rana and Nada.

December 2007 % D‘C%

Xi

Abstract

T he state of the art of automatic recognition of text at the dawn of the
new millennium is that as a field it is no longer an esoteric topic on the
fringes of Information Technology (IT), but a mature discipline that has found many
commercial uses. Automatic font-written (machine-printed) Optical Character/text
Recognizers (OCR) are highly desirable for a multitude of modern IT applications.

Reliable font-written OCR systems for Latin scripted languages are readily in
use since long. For cursively scripted languages, that are the mother tongues of over
Y, of the world population, such OCR systems are however not available at a robust
and reliable performance. In this regard, the main challenge is the mandatory
connectivity of the characters/ligatures (i.e. graphemes) that is to be resolved
simultaneously upon the recognition of these graphemes.

Among the numerous approaches tried over 30 years of Research and
Development (R&D), Hidden Markov Model (HMM) based OCR systems seem to be
the most promising as they capitalize on the ability of HMM decoders to achieve
segmentation and recognition simultaneously as is the case with the widely used
HMM-based Automatic Speech Recognition (ASR) systems.

In our dissertation, an omnifont, open vocabulary, HMM-based Arabic text
recognition system is implemented with the aid of a robust developed algorithm for
lines and words decomposition of multifont and multisize Arabic documents; an
example of cursive scripts. Building an open vocabulary system derives us to the
usage of a character based HMM system not a word based HMM system.

Unlike ASR systems, what is missing in HMM-based OCR systems is the
definition of a rigorously derived features vector capable to robustly achieve minimal
omni-font Word Error Rate (WER) comparable to that realized with Latin scripts. The

design of such a features vector is fully introduced and discussed in this dissertation.

Xii

Based on the OCR-to-ASR analogy, a full fledged Arabic font-written OCR
system analogous to HMM-based ASR systems has been also introduced and
analyzed in this dissertation with and without the aid of statistical language models
(SLM’s). The experimental results done among this dissertation puts our HMM-based
OCR with the new features vector in the lead among the other open-vocabulary omni

font-written OCR systems for cursive scripts , at least for Arabic script.

Xiii

CHAPTER 1

Introduction

Character Recognition is the branch of pattern recognition that ultimately aims
to compete with the human ability to read written text regarding both the speed and
accuracy by associating character codes (e.g. Unicode) to images of characters (i.e.
graphemes).

The origin of character recognition can be found as early as 1870 by the
invention of the scanner, which has first appeared as an aid to the visually
handicapped. The first successful attempt was made by the Russian scientist Tyurin in
1900. The modern version of OCR appeared in the middle of the 1940s with the
development of the digital computers. [Mantas 1986], [Govindan 1990]

Character recognition has become one of the most successful applications of
technology in the field of pattern recognition and artificial intelligence. Many
commercial systems for performing character recognition exist for a variety of
applications, although the machines are still not able to compete with human reading

capabilities.

1.1. Character Recognition Systems Capabilities

Character recognition systems differ widely in how they acquire their input
(on-line versus off-line), the mode of writing (handwritten versus machine printed),
the connectivity of text (isolated characters versus cursive words), and the restriction
on the fonts (single font versus omni-font) they can recognize. [Govindan 1990], [Al-

Badr 1995]

The different capabilities of character recognition are illustrated in Figure

(1.1).

[Character Recognitio@

9 [I 1 .
| /[Off-Line } [On-Line 1 £
(Handwritten) |-
| |

Machine . Isolated .
[Printed } [Handwritten } [Characters } [Curswe Words}

(~
Single Font Isolated
& B | Characters
N\) L)
() (C 3 ~
Omni Font | [ursive
Words
\) L)

Figure (1.1): Character recognition capabilities

1.1.1. On-Line (Real-Time) Systems

These systems recognize text while the user is writing with an on-line writing
device, capturing the temporal or dynamic information of the writing. This
information includes the number, duration, and order of each stroke (a stroke is the
writing from pen down to pen up). On-line devices are stylus based, and they include
tablet displays, and digitizing tablets. The writing here is represented as a one-
dimensional ordered vector of (x, y) points. On-line systems are limited to
recognizing handwritten text. Some systems recognize isolated characters, while

others recognize cursive words.

1.1.2. Off-Line Systems

These systems recognize text that has been previously written or printed on a
page and then optically converted into a bit image. Off-line devices include optical
scanners of the flatbed, paper fed and handheld types. Here, a page of text is
represented as a two-dimensional array of pixel values. Off-line systems do not have

access to the time-dependent information captured in on-line systems. Therefore off-

line character recognition is considered as a more challenging task than its online
counterpart.

The word optical was earlier used to distinguish an optical recognizer from
systems which recognize characters that were printed using special magnetic ink. In
the case of a machine-printed (font-written) document image, this is referred to as
Optical Character Recognition (OCR). In the case of handprint (Mail Orders, Checks,
Credit Cards Applications, ...,etc.), it is referred to as Intelligent Character
Recognition (ICR).

Over the last few years, the decreasing price of laser printers has made
computer users able to readily create multi-font documents. The number of fonts in
typical usage has increased accordingly. However the researcher experimenting on
OCR is unhappy to perform the vastly time-consuming experiments involved in
training and testing a classifier on potentially hundreds of fonts in a number of text
sizes and in a wide range of image noise conditions; even if such an image data set
already existed. Collecting such a database could involve considerably more effort.

Although the amount of research into machine-print recognition appears to be
tailing off as many research groups turn their attention to handwriting recognition, it
is suggested that there are still significant challenges in the machine-print domain.
One of these challenges is to deal effectively with noisy, multi-font (including
possibly hundreds of fonts) cursive scripts.

The sophistication of the off-line OCR system depends on the type and
number of fonts to be recognized. An omni-font OCR machine can recognize most
non stylized fonts without having to maintain huge databases of specific font
information. Usually omni-font technology is characterized by the use of feature
extraction. Although omni-font is the common term for these OCR systems, this
should not be understood literally as the system being able to recognize all existing
fonts. No OCR machine performs equally well or even usably well on all the fonts

used by modern computers.

1.2. Character Recognition Technology Applications

The intensive research effort in the field of character recognition was not only
because of its challenge on simulation of human reading but also because it provides

widespread efficient applications. Three factors motivate the vast range of

applications of off-line text recognition. The first two are the easy use of electronic

media and its growth at the expense of conventional media. The third is the necessity

of converting the data from the conventional media into the new electronic media.
OCR technology has many practical applications [Govindan 1990], [Srihari

1992] which include the following, as examples but not limited to,

e Storing, retrieving and indexing huge amount of electronic data as a results of the
resurgence of the World Wide Web. The text produced by OCRing text images
can be used for all kinds of Information Retrieval (IR) and Knowledge
Management (KM) systems, which are not so sensitive to the inevitable Word
Error Rate (WER) of whatever OCR system as long as this WER is kept lower
than 10% to 15% [Callen 2003]. It might be sufficiently illustrative to mention the
gigantic project of the online global cross lingual searchable library being
achieved by Google ™ as an example of how OCR is vital in this regard [Feng
2006].

e Office automation for providing an improved office environment and ultimately
reach an ideal paperless office environment.

e Business applications as automatic processing of checks.

e Automatic address reading for mail sorting.

e Automatic passport readers.

e Digital bar code reading and signature verification.

e Front end components for blind reading machines by transferring the recognition
results into sound output or tactile symbols through stimulators.

e Machine processing of forms.

e Mobile card reader.

1.3. Arabic OCR Technology

Since the mid-1940s researchers have carried out extensive work and
published many papers on character recognition. Most of the published work on OCR
has been on Latin characters, with work on Japanese and Chinese characters emerging
in the mid-1960s. Although almost a billion of people worldwide, in several different
languages, use Arabic characters for writing (alongside Arabic, Persian and Urdu are
the most noted examples) [Khorsheed 2002], Arabic character recognition has not

been researched as thoroughly as Latin, Japanese, or Chinese and it has almost only

started in 1975 by Nazif [Nazif 1975]. This may be attributed to the following [Al-

Badr 1995]:

1) The lack of adequate support in terms of journals, books, conferences, and funding,
and the lack of interaction between researchers in this field.

(i) The lack of general supporting utilities like Arabic text databases, dictionaries,
programming tools, and supporting staff.

(i11) The late start of Arabic text recognition.

(iv) The special challenges in the characteristics of the Arabic script as stated in the
following section. These characteristics results in the fact that the techniques

developed for other writings cannot be successfully applied to the Arabic writing.

In order to be competent with the human capability at the digitization of
printed text, font-written OCR systems should achieve an omni-font performance at
an average WER < 3% and an average speed > 60 words/min. per processing thread
[Al-Badr 1995]. While font-written OCR systems working on Latin script can claim
approaching such measures under favorable conditions, the best systems working on
other scripts, especially cursive scripts like Arabic, are still well behind due to a
multitude of complexities. For example, the best reported ones among the few Arabic
omni font-written OCR systems can only claim assimilation WER’s exceeding 10%

under favorable conditions and not to mention the realistic ones. [Bazzi 1999],

[Khorsheed 2007]

1.4. Arabic OCR challenges

The written form of Arabic language while written from right to left presents
many challenges to the OCR developer. The most challenging features of the Arabic
orthography are [Al-Badr 1995], [Attia 2004] :

1) The connectivity challenge

Whether handwritten or font written, Arabic text can only be scripted
cursively; i.e. graphemes are connected to one another within the same word with this
connection interrupted at few certain characters or at the end of the word. This
necessitates any Arabic OCR system to not only do the traditional grapheme

recognition task but do another tougher grapheme segmentation one (see Figure

(1.2)). To make things even harder, both of these tasks are mutually dependent and

must hence be done simultaneously.

syand o Ao Cogmddl ol adl Jobd Aol Al y 428

Figure (1.2): Grapheme segmentation process illustrated by manually inserting
vertical lines at the appropriate grapheme connection points.

i) The dotting challenge

Dotting is extensively used to differentiate characters sharing similar
graphemes. According to Figure (1.3), where some example sets of dotting-
differentiated graphemes are shown, it is apparent that the differences between the
members of the same set are small. Whether the dots are eliminated before the
recognition process, or recognition features are extracted from the dotted script,
dotting is a significant source of confusion — hence recognition errors — in Arabic
font-written OCR systems especially when run on noisy documents; e.g. those

produced by photocopiers.

-3
-4

da s L}uhf.,:_}u GECEC J 3 b

Figure (1.3): Example sets of dotting-differentiated graphemes
iii) The multiple grapheme cases challenge

Due to the mandatory connectivity in Arabic orthography; the same grapheme
representing the same character can have multiple variants according to its relative
position within the Arabic word segment {Starting, Middle, Ending, Separate} as
exemplified by the 4 variants of the Arabic character “¢” shown in bold in Figure

(1.4).

& c L3 [

Figure (1.4): Grapheme “¢” in its 4 positions; Starting, Middle, Ending & Separate

iv) The ligatures challenge

To make things even more complex, certain compounds of characters at

certain positions of the Arabic word segments are represented by single atomic

graphemes called ligatures. Ligatures are found in almost all the Arabic fonts, but
their number depends on the involvement of the specific font in use. Traditional
Arabic font for example contains around 220 graphemes, and another common less
involved font (with fewer ligatures) like Simplified Arabic contains around 151
graphemes. Compare this to English where 40 or 50 graphemes are enough. A broader
grapheme set means higher ambiguity for the same recognition methodology, and
hence more confusion. Figure (1.5) illustrates some ligatures in the famous font

“Traditional Arabic”.

L [|
:a-;.ﬁ';.','p’-c._f

Figure (1.5): Some ligatures in the Traditional Arabic font.

iv) The overlapping challenge

Characters in a word may overlap vertically even without touching as

4 l .H ," ,-H,
overlaps

Figure (1.6): Some overlapped Characters in Demashq Arabic font.

shown in Figure (1.6).

v) Size variation challenge

Different Arabic graphemes do not have a fixed height or a fixed width.
Moreover, neither the different nominal sizes of the same font scale linearly with their
actual line heights, nor the different fonts with the same nominal size have a fixed line

height.

vi) The diacritics challenge

Arabic diacritics are used in practice only when they help in resolving
linguistic ambiguity of the text. The problem of diacritics with font written Arabic
OCR is that their direction of flow is vertical while the main writing direction of the

body Arabic text is horizontal from right to left. (See Figure (1.7)) Like dots;

diacritics — when existent - are a source of confusion of font-written OCR systems
especially when run on noisy documents, but due to their relatively larger size they

are usually preprocessed.

° s LSBT Lt ag
o gl Ly e e I3 Al A,

Figure (1.7): Arabic text with diacritics.

Although classic Arabic texts use a relatively limited number of font faces,
new typographic systems have led to the proliferation of Arabic font faces which are
almost as varied as those for Roman alphabets. Because of these, and the mentioned
challenges, the state of the art in Arabic OCR significantly lags that for Roman text.
Hence, a countable handful of Arabic OCR products are commercially available (with

high price) in the market compared to Latin OCR systems (now much cheaper).

1.5. Arabic OCR Text Recognition System

The process of recognizing Arabic text can be broadly broken down into 5
stages after image acquisition; pre-processing, segmentation, feature extraction,

classification, and post-processing as shown in Figure (1.8).

7 =Freprocessing -5 7 =jSegmentation - -

(:'l i I:r I.|" Faatura
Row Image Extraction —‘
L Classification

]

S -

; Text

-

¢ R
{ Character | '] Post | _.
v models ¢ processing

b

Figure (1.8): Typical Components of an OCR-System

Through the image acquisition process, a digital image of the original
document is captured. In OCR, mainly optical scanners are used, which generally
consist of a transport mechanism plus a sensing device that converts light intensity
into gray-levels.

The preprocessing stage is a collection of operations that apply successive
transformations on an image. It takes in a raw image and enhances it by reducing
noise and distortion, and hence simplifies segmentation, feature extraction, and
consequently recognition. After the preprocessing stage, many OCR systems segment
the text into individual characters or strokes before recognizing them.

The feature extraction stage analyzes a text segment and selects a set of
features that can be used to uniquely identify the text segment. These features are
extracted and passed in a form suitable for the recognition phase

The classification stage, the main decision-making stage of an OCR system
uses the features extracted in the previous stage to identify the text segment according
to preset rules. This stage may use feature models obtained in an (off-line) training
(modeling) phase to classify the test data.

Finally, the post processing stage improves the recognition performance by
refining the decisions taken by the previous stage and recognizes words by using
context. It is ultimately responsible for outputting the best solution and is often
implemented as a set of techniques that rely on character frequencies, lexicons, and
other context information.

The preprocessing, segmentation, and post processing stages are not
necessarily executed by all Arabic optical text recognition systems. Some systems
assume noise-free input. Also, some techniques recognize a character before

segmentation, while others recognize isolated characters. [Al-Badr 1995]

1.6. Thesis Objectives

Despite 35 years of Research and Development (R&D) on the problem of
OCR, the technology is not yet mature enough for the Arabic font-written script
compared with Latin-based ones. There is still a wide room for enhancements as per:
lowering the WER, standing robust in face of moderate noise, and working on an

omni-font and open-vocabulary basis.

Among the best trials done in this regard so far, Hidden Markov Models
(HMM) based ones appear. Elaborating on this Automatic Speech Recognition
(ASR)-inspired promising approach, we have significantly refined the basic processes
and modules deployed in such architectures (e.g. lines & words decomposition,
features extraction, models parameters selection, language modeling, .., etc.) to
develop what is hoped to be a truly reliable (i.e. low WER, omni font-written, open-
vocabulary, noise-robust, and responsive) Arabic OCR suitable for real-life

Information Technology (IT) applications.

1.7. Thesis Contributions

While building an omni-font and open vocabulary Arabic OCR system, the
following contributions are evolved:

e Developing an enhanced histogram-based algorithm for line and words
decomposition of Arabic text rectangles, so that it performs robustly on
documents containing the idiosyncrasies of real-life documents especially as per
noise and structural textual complexities.

e The design of a mathematically rigorous lossless differential luminosity coding
based features capable to robustly achieve minimal omni-font WER.

e Developing a visual aid for estimating the training data set size and the codebook
size of a clustering algorithm, in order to achieve the minimal WER achieved
from an OCR recognition system without doing neither computationally expensive
nor time consuming measures.

e The design, implementation and evaluations of a real life omni-font, open-

vocabulary, HMM-based Arabic recognition system.

1.8. Thesis outline

After outlining the problem we are facing with, the objective, and the main
contributions of this thesis, the formal organization of the thesis is illustrated as
follows,

Chapter 2 presents a technical review for Arabic machine printed OCR
techniques. The main steps in any Arabic OCR system including scanning, pre-

processing, segmentation, feature extraction, classification, and post-processing are

10

extensively reviewed. Finally, a survey on the most recent published research on
Arabic OCR is briefed.

Chapter 3 introduces a robust algorithm for lines and words decomposition
especially in Arabic, or Arabic dominated, of text rectangles from real-life multifont /
multisize documents decomposition. Also an extensive evaluation of the introduced
algorithm over different types of document sources with different noise levels is
demonstrated.

Chapter 4 defines and introduces the design of a rigorously derived features
vector capable to robustly achieve minimal omni-font WER. The nature of the
designed autonomously normalized horizontal differential features vector is also
discussed.

Chapter 5 gives an overview of the theory of vector quantization and
clustering. Also, the LBG clustering technique used in the construction of the
codebook used in our proposed system is illustrated. Eventually, a developed
visualization aid that helps us in estimating the best training data set size and the best
codebook size for a least WER is discussed.

Chapter 6 demonstrates the analogy between OCR and ASR problems, and
gives a brief overview of the Hidden Markov Models (HMM's) and its application to
OCR.

Chapter 7 is focused on the discussion of use of the Statistical Language
Models (SLM) in our specific problem, i.e. the decoding of the Arabic words.

Chapter 8 introduces and analyzes a full fledged open-vocabulary, omni font-
written Arabic OCR system analogous to HMM-based ASR systems. Evaluation of
the system performance is also illustrated along with the detailed description of the
Arabic database used in our experiments

Chapter 9 contains a conclusion and a discussion of the future work to be done

to enhance the performance of our Arabic OCR system.

11

CHAPTER 2

Methodologies of OCR Systems;
Theory and Literature Survey

In this chapter, we focus on the methodologies of OCR systems emphasizing on
the off-line Arabic character recognition problem. The different modules of a typical
OCR system; image acquisition, preprocessing, segmentation, features extraction,
training and recognition, and post processing as discussed briefly in chapter one are

discussed in more details in the following sections.

2.1. Image Acquisition

The off-line recognition system recognizes the text after it has been written or
typed. The system may acquire the text using a video camera or a scanner. The latter
iIs commonly used because it is more convenient, it introduces less noise into the
imaging process, extra features such as automatic binarization and image
enhancement can be coupled with the scanning process to enhance the resulting image
text and, most importantly, it is more relevant to the problem of recognizing written
script. [Khorsheed 2002]

Scanning at a higher resolution may be desirable but not practical as it would
need too high storage space. Lower resolution and poor binarization can contribute to
readability when essential features of characters are deleted or obscured. The resulting
image can also be affected by the presence of marking or stains, or if the document
has been faxed or copied several times. The latter causes a diminishing of contrast, the
appearance of ‘salt and pepper’ noise, and the false appearance of text by becoming

either thinner or thicker than the original document. [Khorsheed 2002]

12

2.2. Preprocessing

The recognition accuracy of OCR systems greatly depends on the quality of
the input text and the lack of noise, even more so than with humans. Preprocessing
operations are usually specialized image processing operations that transform the
image into another with reduced noise and variation. Those operations include

2.2.1. Binarization

Binarization, or thresholding, is a conversion from a grey level image to a bi-
level image. A bi-level image contains all of the essential information concerning the
number, position and shape of objects while containing less information. The simple
and straightforward method for thresholding is to select a fixed threshold, where gray-
levels below this threshold is said to be black and levels above are said to be white
[Khorsheed 2002]. For a high-contrast document with uniform background, a pre-
chosen fixed threshold can be sufficient. However, a lot of documents encountered in
practice have a rather large range in contrast. In these cases more sophisticated
methods for thresholding are required to obtain a good result.

The best methods for thresholding are usually those that are able to vary the
threshold over the document adapting to the local properties as contrast and
brightness. However, such methods usually depend upon a multilevel scanning of the
document, which requires more memory and computational capacity. Therefore such
techniques are seldom used in connection with OCR systems, although they result in
better images.

2.2.2. Noise Reduction

The noise, which is introduced by the optical scanning devices causes
disconnected line segments, bumps and gaps in lines, filled loops etc. The distortion
which includes local variations, rounding of corners, dilation and erosion is also a
problem. Prior to the character recognition, it is necessary to eliminate these
imperfections. There are many techniques to reduce the noise which can be
categorized in two major groups; filtering and smoothing [Pratt 1991],
[Gonzalez 2002].

13

2.2.2.1. Filtering

The aim of filtering is to remove noise and diminish spurious points as salt and
pepper noise, usually introduced by the image acquisition device. Various spatial and
frequency domain filters can be designed for this purpose. The basic idea is to
convolve a predefined mask with the image to assign a value to a pixel based on its
neighboring pixels.

A method that is often used is the median filter which is applied to reduce salt-
and-pepper noise, see Figure (2.1) [Bunke 1997]. This is a small window which
passes through all pixels in the image. The pixel in the centre is replaced by the
median value of all the pixels in the region. Median filters are, however, hard deciding
and cause considerable erosive distortion to the graphemes of written text which is

generally harmful to the recognition performance.

Jerall aay | Ugadd ua,

Figure (2.1): Results of removing noise from the original text image in (a) using
median filter with window size of 3-3 in (b), 5-5 in (c) and 7-7 in (d).

2.2.2.2. Smoothing

This reduces the noise in an image using mathematical morphological
operations. The basic idea behind the morphological operations is to filter the
document image replacing the convolution operation by the logical operations.
Various morphological operations can be designed to connect the broken strokes,
decompose the connected strokes, smooth the contours, prune the wild points, thin the
characters, and extract the boundaries. Therefore, morphological operations can be
successfully used to remove the noise on the document images due to low quality of
paper and ink.

Two operations are mainly used, Opening and Closing [Al-Badr 1995]. Opening
opens small gaps or spaces between touching objects in an image; this will break

narrow isthmuses and eliminate small islands. In contrast, Closing fills small gaps in

14

an image; this will eliminate small holes on the contour. Both Opening and closing
apply the same basic morphology operations, namely, Dilation and Erosion, but in the
opposite order [Gonzalez 2002].

2.2.3. Normalization

Normalization methods aim to remove the variations of the writing and obtain

standardized data. The following are the basic methods for normalization.

2.2.3.1. Slant Normalization

This problem may be clearly seen in handwritten words, although machine-
printed words with italic fonts suffer from the same problem. The most common
method for slant estimation is the calculation of the average angle of near-vertical
elements. In [Madhvanath 1999], vertical line elements from contours are extracted by
tracing chain code components using a pair of one-dimensional (1-D) filters.
Coordinates of the start and end points of each line element provide the slant angle.

Another study [Guillevic 94] uses an approach in which projection profiles are
computed for a number of angles away from the vertical direction. The angle
corresponding to the projection with the greatest positive derivative is used to detect
the least amount of overlap between vertical strokes and, therefore, the dominant slant
angle.

In [Bozinovic 89], slant detection is performed by dividing the image into
vertical and horizontal windows. The slant is estimated based on the center of gravity
of the upper and lower half of each window averaged over all the windows. Finally, a
variant of the Hough transform is used by scanning left to right across the image and
calculating projections in the direction of 21 different slants. The top three projections
for any slant are added and the slant with the largest count is taken as the slant value.
On the other hand, in some studies, recognition systems do not use slant correction

and compensate it during training stage [Cote 98].

2.2.3.2. Size Normalization

It is used to adjust the character size to a certain standard. Methods of OCR
may apply both horizontal and vertical size normalizations. Since the sizes of Arabic

characters greatly vary, size normalization is often used to scale characters to a fixed

15

size and to center the character before recognition [Cowell 2002]. This is useful in
recognition methods that are sensitive to variations in size and position like template
matching and correlation methods [Al-Badr 1995].

Although, it was natural to normalize an isolated character into a fixed size
rectangle, a word cannot be normalized in such a way without losing important
temporal information [Cho 1995]. Hence, size normalization is done as a

preprocessing step in isolated character recognition systems.

2.2.4. Skew Detection and Correction

Scanning a document so that text lines are within about three degrees of the
true horizontal is acceptable. This is feasible if the document is aligned manually on
the object glass of the scanner. Recent scanners are equipped with automatic feeders
which may cause the document to rotate up to 20 degrees of the true horizontal. One
of the first steps in attempting to read this document is to estimate the orientation
angle, the skew angle, of the text lines. This process is called skew detection, and the
process of rotating the document with the skew angle, in the opposite direction, is
called skew correction [Khorsheed 2002]. This skew has a detrimental effect on
document on document analysis, document understanding, and character
segmentation and recognition. Consequently, detecting the skew of a document image
and correcting it are important issues in realizing a practical document reader.

The common, and perhaps the most efficient, approach to estimate the skew
angle is to use the Hough Transform [Gonzalez 2002], [Nixon 2002]. This locates
fragmented lines in a binary image. Given a binary image with a dominant text area,
the detected lines will most probably go along the whole middle zone of the textual
lines. Hence these lines have approximately the same skew as the reference lines of
the text which define the skew of the whole page. Whenever the Hough transform is
used, there is always a trade off between accuracy and speed. The more accurate the
angles of the detected lines are, the more computation is required [Yu 1996], [Amin
2000].

Another approach to estimating a skew angle is based on using bounding
boxes of Connected Components. This is a two step process. In the first step, all 8-
neighbour connected pixels are grouped as distinct components, and the centre of
gravity for each component is calculated. In the second step, a virtual line is drawn

between various centers. The angle between this line and the horizontal represents the

16

skew angle. However, implementing this approach to Arabic text image may be
misled by dots and diacritics located above and below the word characters [Khorsheed
2002]. Hence, removing dots and diacritics is a vital step for skew detection of Arabic
text image [El-Adawy 2007].

2.2.5. Thinning and Skeletonization

Thinning is an essential step for many OCR systems whose main task is
reducing patterns to their skeletons. Skeleton of a pattern is the set of points that has
semi-equal distance from two or more points of the pattern contour. Thinning is often
an efficient method for expressing structural relationships in characters as it reduces
space and processing time by simplifying data structures [Al-Badr 1995]. Systems
that recognize handwriting frequently use thinning to reduce the inherent variation in
writing styles. Often, OCR systems traverse the skeleton of a word to simulate an on-
line representation of it [Abuhaiba 1993]

Many thinning algorithms are susceptible to noise in that the generated
skeletons are sensitive to even small variations in the input pattern. Another problem
with many thinning algorithms that is particular to Arabic characters is that it reduces
double and single dots (e.9g., — and —) to the same shape (a short line)
[Mahmoud 1991].

There are particular problems when dealing with Arabic script which have
lower structural contents than Latin script, that is fewer stroke intersections and holes.
Variations in the thickness of strokes in Arabic character cause further problems in the
production of a thinned form which can be used to successfully extract structural
information required in the later stages of character recognition. [Cowell 2001]

Two basic approaches are used for thinning; pixel wise and nonpixel wise
thinning [Lam 1992]. Pixel wise thinning methods locally and iteratively process the
image until one pixel wide skeleton remains. They are very sensitive to noise and may
deform the shape of the character. On the other hand, the nonpixel wise methods use
some global information about the character during the thinning. They produce a
certain median or centerline of the pattern directly without examining all the
individual pixels

Mahmoud et al. [Mahmoud 1991] proposed an algorithm for skeletonization of
isolated Arabic characters that was based on clustering the character image into a set

of a predetermined number of adjacent clusters and each cluster is a group of adjacent

17

pixels of the image. The skeleton is then made up of line segments that pass through
the centers of the clusters. Altuwaijri and Bayoumi [Altuwaijri 1998] implemented a
self-organizing neural network to cluster the Arabic character. Plotting the cluster
centers and connecting adjacent clusters generated a straight-line sequence, which

formed the skeleton.

2.2.6. Page Decomposition

Page decomposition is a sub-field of document analysis. Document analysis
studies the structure of documents and the identification of the different logical parts
in documents. Page decomposition is limited to separating the different lines of a text
block and extracting the words and subwords.

The classical method for identifying text lines in an Arabic text image is to use
a fixed threshold to separate the pairs of consecutive lines [Amin 1989]. This
threshold is obtained using the distances between various baselines of the text. The
median of different distance values is an appropriate selection. An alternative
approach [Khorshed 2002] is to use the horizontal projection and look for the pixel
lines that have a density of zero and then consider that every text line is situated
between two blocks of zero density pixel lines. This method is enhanced by
identifying the lines of pixels that have the largest density in the text. The upper and
lower parts are then analyzed with respect to these lines [Sarfraz 2003].

The next phase is to segment a text line into words and sub-words. Words and
sub-words are determined by inspecting the vertical projection. An average threshold
value computed from all vertical gaps is used to determine whether a spacing is an
inter-word spacing or an intra-word spacing [Altuwaijri 1994], [Al-Badr 1995],
[Khorsheed 2002], [Sarfraz 2003].

2.3. Segmentation

After the preprocessing stage, many OCR systems isolate the individual
characters or strokes before recognizing them. It is one of the hardest, crucial, and
time-consuming phases. It represents the main challenge in many Arabic character
recognition systems, even more than the recognition process itself. It is considered as
the main source of recognition errors. A poor segmentation process produces

misrecognition or rejection [Zeki 2005].

18

As it is so difficult and with a great influence on the final recognition rate,
many researchers tried to avoid this stage by two approaches:

e Isolated Characters Approach [Amiri 2003], [Amor 2006], where they assume
that the characters are already segmented. This approach is useful for academic
purposes, and for the testing of certain pattern recognition techniques. This will not
lead, however, to a practical machine-printed OCR system. The issue is that the
character recognition cannot be dealt with, in isolation from the segmentation
process both in the training and the recognition phases. Recognition of artificially
segmented characters could never lead to practical results, as the segmented

characters should be generated from a real segmentor with all its impurities.

e Holistic (global) Approach, in which the recognition is globally performed on the
whole representation of words and where there is no attempt to identify characters

individually, that is why it is also known as segmentation-free approach .

Some attempts even went to the extent of proposing new fonts to generate
Arabic script instead of cursive Arabic script whereby the characters can be
segmented with simple vertical white cuts to help in automatic document
understanding [Abuhaiba 2003].

Although the Segmentation methods have been developed remarkably in the
last decade and a variety of techniques have emerged, segmentation of cursive script
into characters is still an unresolved problem [Zeki 2005]. Character segmentation
strategies are divided into two categories [Elyacobi 1999]; explicit and implicit

segmentation.

2.3.1. Explicit Segmentation

In the explicit segmentation (or dissection segmentation), words are explicitly
or externally segmented into characters or primitives (like strokes intersection points,
inflection points, and loops) which are then recognized individually. Contextual high
level knowledge (lexical, syntactic or semantic knowledge) is then used to ensure the
proper word identification. This approach is usually more expensive due to the
increased complexity of finding optimum word hypotheses. Projection analysis,
connected component processing, and white space and pitch finding are some of the

19

common dissection techniques used in Arabic OCR systems [Khorsheed 2002], [Zeki
2005].

2.3.2. Implicit Segmentation

In the implicit segmentation, characters are segmented while being recognized,
hence, it is also called recognition-based segmentation or straight segmentation. It
searches the image for components that match predefined classes. Segmentation is
performed by use of recognition confidence, including syntactic or semantic
correctness of the overall result. The advantage of the recognition-based segmentation
technique is that no accurate character segmentation path is necessary. Thus, it
bypasses the character segmentation stage and the recognition errors are mainly due to
failures during the classification stage [Zeki 2005]. In this approach, two different
methods can be employed; method that make some search process and method that
segment a feature representation of the image

The first one attempts to segment words into characters or other units without
use of feature based dissection algorithms. Rather, the image is divided systematically
into many overlapping pieces without regard to content. The basic principle of this
method is to use a mobile window of variable width to provide the tentative
segmentations which are confirmed (or not) by the classification [Al-Badr 1995],
[Zeki 2005].

On the other hand, the second method segments the image implicitly by
classification of subsets of spatial features collected from the image as a whole. In this
method, HMM-based approaches represent the word model as a change of sub-
HMM'’s. The object of HMM’s is to model variations in printing or cursive writing as
an underlying probabilistic structure, which is not directly observable [Gilloux 1993],
[Mohamed 1996].

2.4. Feature Extraction

Feature extraction is the problem of “extracting from the raw data the
information which is the most relevant for classification purposes, in the sense of
minimizing the within class pattern variability while enhancing the between class

pattern variability” [Devijver 1982].

20

The extracted features must be invariant to the expected distortions and
variations that character may have in a specific application. Also the phenomenon
called the curse of dimensionality [Duda 2001] cautions us that with a limited training
set, the number of features must be kept reasonably small if a statistical classifier is to
be used. A rule of thumb is to use five to ten times as many training patterns of each
class as dimensionality of each class [Jain 1982].

Feature extraction is one of the most difficult and important problems of
pattern recognition and an important step in achieving good performance of character
recognition system. A feature extraction method that proves to be successful in one
application domain may turn out not to be very useful in another domain. In practice,
the requirements of a good feature extraction method make selection of a good feature
extraction method for a given method a challenging task.

The choice of feature extraction method limits or dictates the nature and
output of the preprocessing step. Some feature extraction methods work on gray level
sub images of single characters, while other work on solid 4-connected or 8-connected
symbols segmented from the binary raster image, thinned symbols or symbol
contours. Furthermore the type of features extracted must match the requirements of
the chosen classifier. [Trier 1996]

Feature types can be categorized into three main groups: structural features,

statistical features and global transformations.

2.4.1. Structural Features

Structural features are the most popular features investigated by researchers
[Govindan 1990]. Structural features describe a pattern in terms of its topology and
geometry by giving its global and local properties. Structural features can highly
tolerate distortions and variations in writing styles (multi-font) but extracting them
from images is not always easy. A combination of several structural features could
enhance the overall recognition rate. The structural features used in the literature
depend on the kind of pattern to be classified [Al-Badr 95].

In the case of characters, the features include strokes and bays in various
directions, end points, intersection points, loops, dots, and zigzags. Some researchers
use the height, width, number of crossing points, and the category of the pattern
(character body, dot, etc.); the presence and number of dots and their position with

respect to the baseline; the number of concavities in the four major directions, the

21

number of holes, and the state of several key pixels; the number of strokes or radicals
and the size of the stroke’s frame; and the connectivity of the character.

In the case of primitives, the features extracted include the direction of
curvature (e.g., clockwise), the type of the feature point at which a curve was
segmented (cross point, etc.); the direction, slope, and length of strokes; the length of
a contour segment, the distance between the start and end point of the contour
projected on the x- and y-axis, and the difference in curvature between the start and
end points; and the length of vectors in the four major directions that approximate a
curve.

Sometimes the pattern is divided into several zones and several types of
geometric features in each zone are registered and counted, with some features
constrained to specific zones. Those features include the number of concavities, holes,
cross points, loops, and dots; the number and length of the contour segments; the zone
with maximum (minimum) number of pixels; and concavities in the four major

directions.

2.4.2. Statistical Features

Statistical features can be easily and quickly extracted from a text image; they
can tolerate moderate noise and variation, and systems may be trained automatically
for new fonts. The main difficulty, though, is to find an optimal set of features that
would properly partition the space and are efficient to extract and classify.

The statistical features used for Arabic text recognition include: zoning,

characteristic loci, crossings and moments. [Al-Badr 1995]

e Zoning
Features are extracted by dividing a character into overlapping or non-overlapping
regions and using the densities of pixels in these regions as features.

e Characteristic Loci
It counts the number of zero and one segments a vertical line crosses in the pattern

and the length of each segment.

e Crossings and Distances
It counts the number of times a set of radial lines at different angles (e.g., 16 lines

at 0, 22.5”, 45”, etc.) cross the pattern. This method tolerates distortions and small

22

variations and is fast to calculate. Also, the distance of line segments from a given
boundary, such as the upper and lower portion of the frame, can be used as

statistical features.

e Moments
Moments is one of the most popular statistical approaches used widely in visual
pattern recognition ever since they were introduced by Hu in 1961. Abstractly,
when a pattern is visualized as an n™ degree polynomial, the "™ moments are the
coefficients of that polynomial. Invariant moments of a pattern about its center of
gravity are invariant to translation, rotation and scaling [Gonzalez 2002]. Moments
are considered as series expansion representation since the original image can be
completely reconstructed from the moment coefficients. Invariant moments are

sensitive to any change and multi-font recognition [Khorsheed 2002].

2.4.3. Global Transformations:

The transformation scheme converts the pixel representation of the pattern to
an alternate more abstract representation which reduces the dimensionality of features.
In general, transformation schemes can be easily applied and tolerate noise and
variation. However, they sometimes require the use of additional features, in
conjunction, to obtain high recognition rates. [Al-Badr 1995]

The most common transformation techniques used for off-line Arabic

character recognition are:

e Projections
Projection histograms can be interpreted as horizontal and vertical bar masks. They
transform a two-dimensional image into two one-dimensional histograms. Due to
their sensitivity to small rotations in the images, projection histograms cannot be
used as the only features in classification. If used in combination with other

features, histograms may offer useful additional information.

e Fourier Descriptors
Fourier descriptors are used for characterizing the outer boundary of a character.
The first coefficients describe the most coarse shape of the character. The amount

of details is increased as more coefficients are included. Those descriptors are

23

invariant to translation, rotation, and scaling and can tolerate moderate boundary

variations.

e Coding
One of the most popular coding schemas used is Freeman’s chain code. This
coding is essentially obtained by mapping the strokes of a character into a 2-D
parameter space, which is made up of codes. [Khorsheed 2002]

e Hough Transform
The Hough Transform is a standard technique for detecting features as lines in a
given image. Its principal concept is to define a mapping between an image space
and a parameter space. This technique is known for its capacity of absorption of
distortions as well as noises. These features are used to recognize Arabic printed
characters in their different shapes [Amor 2006], [Touj 2003].

e Gabor Transform
Gabor transform has been widely used in pattern recognition domain. It is a
variation of the windowed Fourier transform. In this case, the window used is not a

discrete size but is defined by a Gaussian function. [Hamamoto 1996], [Su 2007]

2.5. Classification:

As in many areas of Image Analysis, Arabic character recognition systems
extensively use the methodologies of pattern recognition, which assigns an unknown
sample into a predefined class. There are four main techniques used,

1. Template Matching,
2. Statistical Techniques,
3. Syntactic Techniques,
4. Neural Networks.

The above techniques use either holistic or analytic strategies for the training
and recognition stages [Amin 1997], [Dehghan 2001] where,

e Holistic (Global) strategy employs top down approaches for recognizing the full
word, eliminating the segmentation problem. This approach can be used for

particular applications where the size of the vocabulary is small (as would be the

24

case in a typical application such as the recognition of the legal amount in cheques
provided the words in the phrase are well isolated).

e Analytic strategy employs bottom up approaches. Word is considered as a
sequence of smaller components like strokes, characters or graphemes. The word is
identified by extracting and recognizing its constituent components. Explicit or
implicit segmentation algorithms are required for this strategy. This not only adds
extra complexity to the problem, but also introduces segmentation error to the
system. However, with the cooperation of segmentation stage, the problem is
reduced to the recognition of simple isolated characters or strokes, which can be
handled for recognition applications that involve large-size vocabularies

Holistic Strategy Analytic Strategy
Whole word recognition Subword (strokes or graphemes)
recognition
Limited vocabulary Unlimited vocabulary
No segmentation Requires explicit or implicit
segmentation

Table (2.1): Classification strategies; Holistic versus Analytic

2.5.1. Template Matching:

Template matching and correlation methods basically compare a pattern pixel-
by-pixel to a set of pattern templates; the pattern is considered to belong to the class
of the template to which it is most similar.

A gray-level or binary input character is directly compared to a standard set of
stored prototypes. According to a similarity measure (e.g., Euclidean, Mahalanobis,
Jaccard, or Yule similarity measures, etc.), a prototype matching is done for
recognition. The matching techniques can be as simple as one-to-one comparison or
as complex as decision tree analysis in which only selected pixels are tested. Although
direct matching method is intuitive and very fast to execute, the recognition rate of
this method is very sensitive to noise.

An alternative method is the use of deformable templates, where an image

deformation is used to match an unknown image against a database of known images.

25

In [Jain 97], two characters are matched by deforming the contour of one to fit the
edge strengths of the other. A dissimilarity measure is derived from the amount of
deformation needed, the goodness of fit of the edges, and the interior overlap between

the deformed shapes.

2.5.2. Statistical Techniques (Decision Theoretic)

In the statistical approach, each pattern is represented in terms of d-features or
measurements and is viewed as a point in a d-dimensional space. The goal is to
choose those features that allow pattern vectors belonging to different categories to
occupy compact and disjoint regions in a d-dimensional feature space. Given a set of
training patterns from each class, the objective is to establish decision boundaries in
the feature space which separate patterns belonging to different classes. In the
statistical decision theoretic approach, the decision boundaries are determined by the
probability distributions of the patterns belonging to each class, which must either be
specified or learned. [Jain 2000], [Duda 2001]

Statistical decision theory is concerned with statistical decision functions and a
set of optimality criteria, which maximizes the probability of the observed pattern
given the model of a certain class [Devijver 1982]. Statistical techniques are mostly
based on three major assumptions,

1) Distribution of the feature set is Gaussian or in the worst-case uniform.

2) There are sufficient statistics available for each class.

3) Given ensemble of images, one is able to extract a set of features {fi}e {1, ..., d}
which represents each distinct class of patterns.

The major statistical approaches applied in the OCR field are listed below.

2.5.2.1. Nonparametric Recognition

This method is used to separate different pattern classes along hyperplanes
defined in a given hyperspace. The best-known method of nonparametric
classification is the nearest neighbor classifier and is extensively used in OCR [Blue
1994]. It does not require a priori information about the data. An incoming pattern is
classified using the cluster, whose center is the minimum distance from the pattern

over all the clusters.

26

2.5.2.2. Parametric Recognition

Since a priori information is available about the characters in the training data,
it is possible to obtain a parametric model for each character. A common statistical
method used in OCR is the Bayesian classification [Al-Yousefi 1992], [Duda 2001].
Bayes’ classifier minimizes the total average loss. Given an unknown symbol
described by its feature vector, the probability that the symbol belongs to a certain
class is computed for all classes. The symbol is then assigned the class which gives
the maximum probability.

For this classifier to be optimal, the probability density functions of the
symbols of each class must be known, along with the probability of occurrence of
each class. The latter is usually solved by assuming that all classes are equally
probable. The density function is usually assumed to be normally distributed, and the
closer this assumption is to reality, the closer the Bayes’ classifier comes to optimal
behavior.

Bayes classifier for Gaussian classes is specified completely by the mean
vector and covariance matrix of each class. These parameters specifying the
classifiers are obtained through a training process. During this process, training
patterns of each class is used to compute these parameters and descriptions of each

class are obtained.

2.5.2.3. Hidden Markov Modeling (HMM)

Hidden Markov Models have been found extremely efficient for a wide
spectrum of applications, especially speech processing [Rabiner 1986, 1989]. This
success has motivated researchers to implement HMM’s in character recognition.
HMM is qualified as a suitable tool for cursive script recognition for its capability of
naturally modeling temporal information [Bunke 1995], [Cho 1995].

HMM is a doubly stochastic process, with an underlying stochastic process that
is not observable (hence the word hidden), but can be observed through another
stochastic process that produces the sequence of observations. The hidden process
consists of a set of states connected to each other by transitions with probabilities,
while the observed process consists of a set of outputs or observations, each of which
may be emitted by each state according to some probability density function (pdf).

27

Depending on the nature of this pdf, several HMM classes can be distinguished.
It the observations are naturally discrete or quantized using vector quantization [Gray
1984, 1998], and drawn from a codebook, the HMM is said to be discrete. If these
observations are continuous, we are dealing with a continuous HMM, with a
continuous pdf usually approximated by a mixture of normal distributions. Another
family of HMM’s, a compromise between discrete and continuous HMM'’s, are semi-
continuous HMM’s that mutually optimize the vector quantized codebook and HMM
parameters under a unified probabilistic framework [EI- Yacoubi 1999].

There are many ways that HMM’s had been applied to character and word
recognition. A state can represent a character class or it can represent a sub character
symbol or feature. A model can represent a character, a word or even a complete
lexicon. Classification methods therefore vary, a set of character models may be used
in which case a maximum likelihood solution can be found by scoring each model as
to how close it matches the unknown pattern. Alternatively the classes may be
distributed within a model such that the classification depends on the state sequence

of the model which best fits the pattern. HMM is covered in more details in chapter 6.

2.5.3. Syntactic (Structural) Techniques

In many recognition problems involving complex patterns, it is more
appropriate to adopt a hierarchical perspective where a pattern is viewed as being
composed of simple sub-patterns which are themselves built from yet simpler sub-
patterns. The simplest/elementary sub-patterns to be recognized are called primitives
and the given complex pattern is represented in terms of the interrelationships
between these primitives.

In syntactic pattern recognition, a formal analogy is drawn between the
structure of patterns and the syntax of a language. The patterns are viewed as
sentences belonging to a language, primitives are viewed as the alphabet of the
language, and the sentences are generated according to a grammar. Thus, a large
collection of complex patterns can be described by a small number of primitives and
grammatical rules. The grammar for each pattern class must be inferred from the

available training samples. [Al-Badr 1995]

28

The use of syntax to express structure is a disadvantage of the structural
approach, since patterns can have infinite variations and do not always adhere to the

strict mathematical constraints set by the formal languages theory [Govindan 1990].

2.5.4. Neural Networks

A neural network (NN) is defined as a computing architecture that consists of
a massively parallel interconnection of adaptive “neural” processors. Because of its
parallel nature, it can perform computations at a higher rate compared to the classical
techniques. Because of its adaptive nature, it can adapt to changes in the data and
learn the characteristics of input signal. An NN contains many nodes. The output from
one node is fed to another one in the network and the final decision depends on the
complex interaction of all nodes. In spite of the different underlying principles, it can
be shown that most of the NN architectures are equivalent to statistical pattern
recognition methods.

Arabic OCR using neural networks can simply cluster the feature vectors in
the feature space, or they can integrate feature extraction and classification stages by
classifying characters directly from images. Generally speaking, the common
architecture of NN’s used in Arabic OCR is a network with three layers: input, hidden
and output. The number of nodes in the input layer varies according to the
dimensionality of the feature vector or the segment image size. The number of nodes
in the hidden layer governs the variance of samples that can be correctly recognized
by this NN. [Khorsheed 2002]

A brief description and comparison of the mentioned classification approaches

is summarized in the following table,

Approach Representation Recognition Typical
function criterion
Template Matching Pixels Correlation, Classification
Distance measure error
Statistical Features Discriminate Classification
function error
Syntactic/Structural Primitives Rules/ Grammar Acceptance
error
Neural Networks Pixels, Features Network function Mean square
error

Table (2.2): Classification Approaches Comparison

29

2.5.5. Hybrid Approaches

To improve recognition performance, a trend now is to build hybrid systems,
which use diverse feature types and combinations of classifiers arranged in layers.
Using a fusion method between hybrid approaches, improved system performance can
be achieved. [Magdy 2007]

As a result, increasingly many researchers now use combinations of the above
feature types and classification techniques to improve the performance of Arabic OCR
systems, but most of them applied it on handwritten Arabic scripts. These researches
found it a very promising approach in improving the recognition accuracy. [Al-Badr
1995], [Gouda 2004]

2.6. Post-Processing

The review of the recent OCR research indicates minor improvements when
only shape recognition of the character is considered. Therefore, the incorporation of
context and shape information in all the stages of OCR systems is necessary for
meaningful improvements in recognition rates. This is done in the post-processing
stage with a feedback to the early stages of OCR.

Post-processing is used to improve the word recognition rate (as opposed to
character recognition rate) by correcting the output of the OCR system based on
linguistic (Natural Language Processing (NLP)) knowledge. The linguistic level could
be either on character level, lexical level (spell checker), morphological level (using a
morphological analyzer, to detect all possible word forms), and up to the syntactic,
higher level semantic, and discourse levels.

On the character level, statistical information derived from the training data
and the syntactic knowledge such as n-grams improves the performance of the
matching process.

On the lexical level, spell checking and correction operations are used. Spell
checking can be as simple as looking up words in a lexicon. To improve the speed of
lookup, a lexicon is sometimes represented as a tree. When spell checking fails, the
Viterbi algorithm is used to find alternate words whose characters, with a high
probability, can be interchanged with the original ones, using a HMM for each word
[Amin 1989].

30

Morphological analyzer is used to first remove prefixes and suffixes and then
reduce the resulting word to its root. This method of representing a word as a root and
a pattern (the pattern specifies how the root relates to the original word) can
considerably reduce the size of the dictionary (at the expense of some computation)
[Al-Badr 1995], [Sari 2002].

In sentence level, the resulting sentences obtained from the output of the
recognition stage can be further processed through parsing in the post-processing
stage to increase the recognition rates. The recognition choices produced by a word
recognizer can be represented by a graph as in the case of word level recognition.
Then, the grammatically correct paths over this graph are determined by using
syntactic knowledge. However, post-processing in sentence level is rather in its
infancy, especially for languages other than English, since it requires extensive
research in linguistics and formalism in the field of Al. [Gouda 2004]

As a technique for post-processing, recognition rates confusion matrix is
extracted from the OCR output. This information is rewritten in the form of
production rules. These rules are later used to detect the substituted characters [Sari
2002].

2.7. Machine-Printed Arabic OCR Survey

Earlier surveys discussed both machine-print and handwriting, with much
more discussion of machine-print [Al-Badr 1995], [Amin 1998], [Khorsheed 2002].
Within the past 10 years, many approaches had been developed to produce reliable
Arabic OCR systems. The most obvious systems can be briefed as follows.

In 1998, Al-Badr et al. presented a holistic recognition system based on shape
primitives that were detected with mathematical morphology operations. They used a
single font, and training was on idealized isolated samples. These operators are
normally very sensitive to noise generated from the scanner, and could also degrade in
low resolutions. They achieved 27% CER for a limited lexicon. [Al-Badr 1998]

BBN developed a script-independent methodology for OCR, which had been
tested on English, Arabic, Chinese, Japanese, and other languages [Makhoul 1998]
using their HMM-based speech recognizer with statistical features from image frames
(vertical strips). Only the lexicon, language model, and training data depended on the
language. In 1999, Bazzi et al. presented a modified system for English and Arabic in

31

which the lexicon was unlimited. The DARPA Arabic OCR Corpus was used for
testing. The system achieved a CER of 4.7% for an omnifont database. [Bazzi 1999],
[Lu 1999].

In 1999, Khorsheed et al, have presented a technique for extracting structural
features from word’s skeleton for recognition without prior segmentation. After
preprocessing, the skeleton of the binary word image was decomposed into a number
of segments in a certain order. Each segment was transformed into a feature vector.
The target features were the curvature of the segment, its length relative to other
segment lengths of the same word, the position of the segment relative to the centroid
of the skeleton and detailed description of curved segments. The result of this method
was used to train the Hidden Markov Model to perform the recognition. [Khorsheed
1999] This system depends highly on a predefined lexicon which acts as a look-up
dictionary, so it can be applied only to a single font and for a very limited vocabulary
size.

In 1999, Gillies et al. adopted an explicit segmentation followed by
recognition approach The Arabic cursive word was segmented into basic primitives
which could be a part of a character or a whole character. The characters were then
reconstructed from the recognized primitives. Using a chain code features and neural
network classifier, the system performance applied on multi-fonts Arabic database
achieved was about 7% CER at scanning resolution 200dpi and limited lexicon.
[Gillies 1999]

In 2000, Khorsheed et al. transformed each word in a certain lexicon into a
normalized polar image, then a two dimensional Fourier transform was applied to the
polar image. The resultant spectrum tolerates variations in size, rotation or
displacement. Each word was represented by a template that includes a set of Fourier
coefficients. The recognition was based on a normalized Euclidean distance from
those templates. This method showed CER of 10% but for a fixed lexicon size.
[Khorsheed 2000]

In 2001, Abdelazim recognized the Arabic word using a segmentation-free
sequential algorithm, and an entropy-based stopping criteria for character-to-character
recognition. The CER achieved average 3.5 % when the system was tested on 10
different fonts. [Abdelazim 2001]

In 2001, Cheung et al. proposed an Arabic OCR system, which uses a

recognition-based segmentation technique. A mobile window of variable width was

32

used to provide the tentative segmentations which were confirmed (or not) by the
classification. Chain codes were used in the feature extraction stage while string
matching was used in the classification stage achieving 10 % CER. [Cheung 2001]

In 2002, Hamami and Berkani developed a structural approach to handle many
fonts and it included rules to prevent over-segmentation. The developed system can
recognize multi-font of Arabic script at about 1.44% CER. [Hamami 2202]

In 2003, Sarfraz et al. presented a technique for the automatic recognition of
Arabic printed text using NN’s. The main features of the system were preprocessing
(noise removal and skew detection and correction) of the text, segmentation of the
text to individual characters, feature extraction using moment invariant technique and
recognition using RBF Network. CER reached by the system is about 27% for a uni-
font database. [Sarfraz 2003]

In 2007, Khorsheed developed a system to recognize cursive Arabic text. The
proposed system was based on HMM Toolkit basically designed for speech
recognition purpose. The system was segmentation-free with easy to extract statistical
features. The achieved system performance was about 5% CER for multi-font Arabic
database. [Khorsheed 2007]

It is remarkable that OCR systems in general are being developed since
decades, tens of research Arabic OCR pilots have been produced by the academia, and
handful Arabic OCR products are even available in the market. However, a reliable
Arabic OCR software that works on real-life (multi-font, multi-size, maybe noisy,...)
documents at a practically acceptable average WER within 3% is yet away from being
available in the market. [Kanungo 1997], [Windows Magazine Middle East, April
2007]

33

CHAPTER 3

Arabic Lines and Words Decomposition

Given font/type-written text rectangle bitmaps extracted from digitally
scanned pages, inferring the boundaries of lines hence complete words is a
preprocessing vital to whatever OCR system while the recognition process itself as
well as the post-processing necessary for producing the recognized text.

Decomposing the target text block into lines hence into words is perhaps the
most fundamental such preprocessing where errors add in the overall WER of the

whole OCR system. This can be shown as follows:

a=l-e=(1-¢))-(1-e,)=1-(e, +e,—e, -e,)
e e, <<l Eq. 3.1)

Lexe te,

where e, is the decomposition WER, e, is the recognition WER, and e is the overall

WER. It is hence obvious how critical is the reliability of the lines & words
decomposer to the viability of the whole OCR system.

Histogram-based methods are commonly used for lines & words
decomposition. Despite being commonly used, simple-to-implement, and
computationally efficient, the histogram-based approach may be vulnerable to some
idiosyncrasies of real-life documents especially as per noise and complex textual
formats [Al-Badr 1995].

Based on this approach and to overcome its shortcomings, especially with
Arabic script, a more robust algorithm for lines/words decomposition especially in

Arabic, or Arabic dominated text rectangles from real-life multifont/multisize

34

documents is developed and discussed in this chapter. This algorithm has proved
robust on realistic Arabic, or Arabic dominated, documents after the extensive

experimentation presented in section 3.2.
3.1. Enhanced Histogram-Based Lines & Words Decomposition Algorithm

The enhanced algorithm presented here is simply composed of a sequential
series of processing procedures whose overall logical structure may be briefed in the
following steps:

1. Filtering.

2. Getting the Darkness & Brightness Centroids.

3. Writing-Lines Decomposition.

3.1. Physical Writing Lines Decomposition.
3.1.1. Initial Lines Decomposition.
3.1.2. Refined Lines Decomposition.

3.2. Logical Writing-Lines Concatenation.

4. Writing-Lines Grouping.

5. Part-of-Words Decomposition.

6. Full Words Concatenation.

6.1. Eliminating Rouge Spaces Among Part-of-Words.
6.2. Clustering Inter-word/Intra-Word Spaces.

These steps are presented in what follows as a sequence of cascaded steps

applied to the sample Arabic text rectangle bitmap shown in Figure (3.1) as a running

example visualizing the dynamics of that decomposition process.

Gl S5) s)

e

RDI A< i Al clas g Liall

=t

N TN
\JEJM' A

Ls ol aiall Lell 4 sl dmaalSYL 2o loe w10
Ll 2l iDL SR L s ja

Figure (3.1): Sample Arabic text rectangle bitmap; Laser-printed, photocopied once,
and scanned at 300 dpi & 256 gray shades.

35

3.1.1. Step 1; Filtering

The target text rectangle bitmap is passed through a median filter in order to
clean the salt & pepper noise [Pratt 1991], [Gonzalez 2002] typically occurring in
noisy images extracted, for example, from photocopied documents. In our study, a
5x5 median filter has proved effective for cleaning input scanned text images like our
running example in Figure (3.1) which is turned after that filtering into the one just

below in Figure (3.2).

0 i > gunadll 2 anll A o Auwl 3
- \ \
>y — e) [P

1 \"'l 1 1 \

Figure (3.2): Sample text rectangle bitmap after median filtering.

3.1.2. Step 2; Getting the Darkness & Brightness Centroids

For deciding about the blankness of horizontal/vertical pixels-scan-lines in
later steps of this algorithm, it is necessary to accurately determine the centroid of
darknessc,, and the centroid of brightness c¢,. We apply the famous K-means
clustering algorithm on the gray values histogram of the pixels population in the target
text image, on the standard scale from 0 (darkest)-to-255 (brightest), to accurately
acquire ¢, and c, .

Figure (3.3) shows such a histogram of our running example along with the
darkness and brightness centroids resulting from the application of the K-means

algorithm. For two-color images ¢, = 0, and ¢, = 255.

36

1I:I E T T T T T T T T

10" i
o

10 3 Brightness-Darkness E

b Threshold

1D3? i E

10° ! 3

10 b Cp =133.07 i Cp=25455 |
ol i

1 D 1 1 1 1 1 1 1 1
a0 1aa 120 140 160 180 200 220 240 260

Figure (3.3): Gray values histogram of the pixels population of the sample text
rectangle.

3.1.3. Step 3; Writing-Lines Decomposition

Getting the vertical range [y; porom , Viop] Of €ach writing line L; , whose height
hi = Yitop - Viborom 18 accomplished through the two following sub-steps; 3.1 and 3.2:

3.1.3.1. Step 3.1; Physical Writing Lines Decomposition

This sub-step is trivially done once we get rationally able to decide about
whether a given horizontal scan-line /; is blank or non-blank. Intuitively, /; is blank if

the following condition is true;

kzxk,g,,,’
> (255- p(k, j)) < w,-(255—c,) Eq. (3.2)

k:xk,g,,,’. —w;+1

where w; is the effective width of L; to which /; belongs. This means the decision is
tolerable to noise within the amount that locates c, in step 2. As w; is yet unknown till

the writing-lines decomposition is done, we go around this circular problem by

dividing sub-step 3.1 in turn into the following two sub-steps; 3.1.1 and 3.1.2:

37

A. Step 3.1.1; Initial Lines Decomposition

Here, initial writing lines L with vertical ranges [y;mm , y,ftul)]and

heightsh’ =y, —y.,...,are computed with the blankness condition modified to:

k

=W-1

(255=p(k, j)) <W -(255—cp) Eq. (3.3)
k=0
Noting that w; < W, all the scan-lines decided to be non-blank are truly so, according
to Eq. (3.2), while few short scan-lines may be falsely decided blank and have to be
reconsidered in the next sub-step 3.1.2. Figure (3.4) shows the result of sub-step 3.1.1

applied on our running text-image example.

.':\.. ° . IrI s 1 o | . ',‘."‘ ., " 5
\7._54..:::5...._.0.&..]' _‘,__‘.):_‘1! HL.Q_..E‘ ALl (e ‘\.A.JJ‘._.

>4

=1 -1 1 1 T
'l._:..llll h—.:b&-SI q J: 74#-‘-.. \-:’_.I

._‘L_&_'s'_“.;;})_t_L..“'_-_JL -'_.....-_“,_ T < Y Dl

Figure (3.4): Sample text rectangle bitmap after initial lines decomposition.

B. Step 3.1.2; Refined Lines Decomposition
Now, for each scan-line /; judged as blank in the previous sub-step 3.1.1; it
gets re-tested in this sub-step 3.1.2 with the blankness condition modified to:

k:xRighz (i

J)
.)3 (2155—1?(/@]')) S W, (255-¢4) Eq. (3.4)
=XRight y(jy “Wn(j)t
where n(j) is defined as the index of the nearest writing-line, as obtained from the
sub-step 3.1.1, to the scan-line /. After this second pass of blankness decisions; the
writing lines L; are accordingly re-labeled as shown in Figure (3.5).

38

1
\ LY

1= ¢ = ¥] - -
y P o] T a)
el o 9......4.4_]! 2)a_‘\ sl A PEN aul

1=t .1 1 1 '
'.:‘..lt \._‘_.c..is/r.) §a __;._.'-

PRV,

RDI &5 G0 Do 5 LGl

-

Ti
S A ass
~p J

— g_gs;-g A saml A JAh__if;_ T < W 1 il

ot

Figure (3.5): Sample text rectangle bitmap after refined lines decomposition.

For initially decomposed writing-lines L ; their vertical darkness histograms

g, (k) given by
j:YLm

g (k)= > (255- p(k,) Eq. (3.5)

.=
J=Yi bottom

are pruned from both tails in a farther-first manner to avoid false extensions due to
any parasitic signals (e.g. noise) while computing the effective widths w; of those
initially decomposed writing-lines. In our experiments; it has been found best to prune

masses beyond y; + 2-0; of the mentioned histograms.

3.1.3.2. Step 3.2; Logical Writing-Lines Concatenation

Orthography in general, and Arabic script in specific, is full of dots and
diacritics over and under the basic bodies of graphemes [Al-Badr 1995], [Attia 2004].
This may, especially with short lines, cause sub-step 3.1 produce false thin physical
writing-lines which logically belong to thick neighbors. In such cases, these
neighboring physical writing-lines have to be unified in logical ones.

To realize that concatenation, a concatenation test is iterating until it states
false for all the writing-lines in the target text-image. For a writing-line L; , the

concatenation conditions with its neighbors L, ;.;~9 and Litri<i, 1€ respectively;

Concaty,,,, = (hhi < a)AND(Wi_M <p) Eq. (3.6)
-1 -1

Concat ;,, = (hl < a)AND(WZM <p) Eq. (3.7)
i+] i+l

39

If neither of the conditions is TRUE, no concatenation occurs and the test
advances to the next writing-line. If either condition is TRUE, concatenation happens
with the corresponding line, and the test resumes iterating at the first writing-line on
top of text image. If hoth conditions are TRUE, concatenation happens with the closer
writing-line, and the test resumes iterating at the first writing-line on top of text
image.

As per the nature of Arabic script, our extensive experiments show that, the
best values for a and g are 0.35 and 0.30 respectively. Figure (3.6) shows the resulting

logical writing lines of our running example after applying sub-step 3.2.

B eia > cnadll s 12l N W
\..../C'..p...ﬂ C E..M-M _:;_-)LI u".a” ;_....__:, u/:‘.:u fg WP =

“!,‘ \ r< \ 1
il Jlads ¢ p = VN !
- < - LT

doal lans

RDI &0 G Sl 5 Lo

-

S Al e
-y S

- ——tr —
s o il g oo gl A el A8 U AL s b Sl

-

Figure (3.6): Sample text rectangle bitmap after logical writing lines concatenation.

3.1.4. Step 4; Writing-Lines Grouping

Heights of writing lines are usually considered as a rough, never an accurate,
indication of the font size they are written in. So, gathering the writing lines in a given
text image in groups, where the heights of these lines in the same group are of a
sufficiently small variance, may be useful for the recognition process that might tune
some parameters for each group according to say its average height.

Far more importantly, this grouping is a necessary auxiliary step towards
deciding whether a given space between successive separate word segments is an
inter or intra word space. See step 6 .

We here group the writing-lines so that the standard deviation of the writing-
lines heights o in each group and the average of these heights /g satisfy the condition

O'gS V- hg.
40

In our experiments, y is tuned to 0.2. The 1% and 2™ writing lines from the top

of Figure (3.6) are gathered in one group, while the rest are gathered in another one.

3.1.5. Step 5; Part-of-Words Decomposition

In this step, part-of-word segments on each writing line L, are separated by the
vertical spaces among them. This is easily done once we get able to decide whether a
given vertical scan-line segment at x = k£ within the range of L; is blank or non-blank.

Similar to formula (3.2) in step 3.1; such a blankness condition is formulated as:

J=Viop

2.(255= p(k, j)) < h; (255 ¢;) Eq. (3.8)

J=Yi bottom

Figure (3.7) shows the result of decomposing the part-of-word segments in our

running example, with each marked by a surrounding rectangle.

‘.,

a A

e B3 L e B2

yon] L2 o=
|

b

e |7
< Al

"".\l 1 1(1 .]
2l el g | 5o |

o)

RO Bl full] S [L]

-

o T :
[P . [,

(N

ES P PRSI IP)E PN LN PENI FNSNECS)2 S g pre

Figure (3.7): Sample text rectangle bitmap after part-of-words decomposition.

3.1.6 Step 6; Full Words Concatenation

Arabic script is quasi-cursive; i.e. words are composed of connectedly written
characters, however, the occurrence of some characters mandates putting an end to
their part-of-word segments and starting any subsequent characters in a new separate
segment. Fortunately, the spaces separating part-of-word segments in different words
(i.e. inter-word spaces) are typically larger than the spaces among part-of-word
segments within the same word (i.e. intra-word spaces).

However, there is no static rule to distinguish intra-word spaces from inter-

41

word ones. Using an adaptive clustering algorithm, like the one of K-means, is hence
an obvious resort to do that distinction after considering the following two
precautions:

The first precaution is that only spaces coming from the same writing lines
group, as obtained in step 4, are clustered together. The second precaution is more
challenging as it is concerned with eliminating the rogue spaces whose widths are too
large with respect to the other normal inter-word and intra-word spaces in their group.
If rogue spaces are not eliminated, many spaces may falsely be judged as intra-word
spaces!

Rogue spaces - which are eliminated through step 6.1 - emerge due to either

unfiltered noise or special editing structures (e.g. tabs) in the target text-image.

3.1.6.1. Step 6.1; Eliminating Rogue Spaces Among Part-of-Words

This problem is in fact a hard one of outlier's detection as named in the
literature of data mining. Capitalizing on our rich experience about the nature of
Arabic/Arabic-dominated script, a much simpler yet effective heuristic solution is
introduced here. Consider Figure (3.8) illustrating a histogram of a spaces group
where the widths of intra-word spaces, inter-word spaces, and rogue spaces are

plotted.

rogue

SMU'& Sal-'g S.Tme}' SC!H‘—Uff spaces

Figure (3.8): A hypothetical histogram of intra-word, inter-word, and
rogue part-of-word spaces.

The optimal threshold between the intra-word centroid Sy, and inter-word
centroid Siyzer 1S Singra + 2 * (Sinter = Sinra). If symmetry around Sj., is also assumed, the

cut-off space width for eliminating the rogue spaces can then be expressed as

SCut—Oﬁ” = Slnter + 1/2 : (Slnter - S[ntra) Eq (3 9)

42

While the average of all spaces Savg is easily computable, the centroids Sy

and Sjuer are unknown. So, we seek an expression of S¢,.-o in terms of only Save. Let

S, . =¢&S, ;0<¢<1 Eq. (3.10)

Intra

Substituting from Eq. (3.10) in Eq. (3.9), we get

Seop =V2-(3-¢)-S,, Eq. (3.11)

Moreover, with J is a weighting preference parameter Savg may be expressed as

S,.=8,. (zto)+S,, (2-05), 0<6<V Eq. (3.12)

Substituting in Eq. (3.12); for Sy, from Eq. (3.10), then for S, from Eq. (3.11), we
get

Scm—O// = 3_8 .Suvv
(1-2-0)+e-(1+2-5) ™

Eq. (3.13)

Setting £=0, 6=0 at the extreme, results in Scu.op = 3 - Savg. However, our
empirical knowledge of the Arabic script in general realistic conditions states
£€[0.1,0.20], 0€[0.05,0.1] which produces the simple rogue-spaces cut-off formula
that

Seuor €[2.5-8,.,3.15-8_] Eq. (3.14)

3.1.6.2. Step 6.2; Clustering Inter-word/Intra-Word Spaces

Once the rogue spaces are eliminated — if any - from a spaces group, the rest of
these spaces in the group are clustered by the K-means algorithm into an intra-word
spaces cluster whose centroid is Sy, and another inter-word spaces cluster whose
centroid is Siser > Sintra-

Figure (3.9) shows the result of diagnosing inter-word spaces, hence

completing the task of decomposing a text rectangle bitmap into whole words.

43

B o) b

i) frand
RO 3 o) o []

s o] pand
T e o) sV B

Figure (3.9): Sample text rectangle bitmap after full words concatenation.

3.2. Decomposition Algorithm Evaluation

To assess the lines & words decomposition algorithm presented above, we ran
it on a total of 1800 real-life documents evenly covering different kinds of sources,
different levels of image-quality, and different scanning resolutions and color depths
as explained in Table (3.1). This evaluation database has been acquired via a common
hardware of HP 3800 flatbed scanner with TMA, HP Laser jet 1100 printer, and
XEROX 256XT photocopier.

The WER of this algorithm is e, = Ne+Nwwa ; Niowar 15 the total number of

contiguous (i.e. un-spaced) strings in the input text block, and N, is the number of
wrongly decomposed full-word rectangles that either contain more than one
contiguous strings or contain only part of contiguous strings. Errors due to typing
mistakes, tiny isolated noise stains (recognized harmlessly as dots), and wrongly-split
contiguous numbers (retrieved contiguous in the OCR post-processing), are all not

counted as errors.

44

ep (%) ep (%) ep (%)
Source of for LASER printed for Book pages for News Papers
doc.’s documents 50 pages, 987 lines, 50 pages, 1309 lines,
—> 50 pages, 1081 lines, 12524 words 12870 words
12146 words
Number of
photocopying | PC#0 | PC#1 | PC#2 | PC#0 | PC#1 | PC#2 | PC#0 | PC#1 | PC#2
9
300 dpi,
B&W 041 059 (073 044 [0.61 [0.71 |0.59 |0.71 [0.90
300 dpi,
Gray Shades 036 |0.56 |066 (042 [0.58 |0.68 |2.10 (291 |3.67
600 dpi
B&W 035 050 (061 [038 [0.53 [0.64 |0.50 |0.63 [0.84
600 dpi,
Gray Shades | 032 | 046 [0.57 [0.31 045 [0.59 | 085 |1.10 |01.43

Table (3.1): Results of evaluation experiments on the proposed decomposition
algorithm.

From the previous evaluation, it is easily to infer the following:

* The WER tends to get higher with more numbers of photocopying (higher
noise).

* The WER also tends to get lower with higher scanning resolutions.

* The WER tends to get lower with higher color depths, except for highly noisy
text images (e.g. News Papers) where Black & White (B&W) colors performs
better especially at lower scanning resolution.

* The algorithm does not collapse with the complexity (multiplicity of fonts &
sizes) of the target text images.

It is also rationally robust against the noise levels till News Papers

photocopied twice.

45

CHAPTER 4

Autonomously Normalized Horizontal Differential
Features Extraction

Feature extraction is the problem of “extracting from the raw data the
information which is the most relevant for classification purposes, in the sense of
minimizing the within class pattern variability while enhancing the between class
pattern variability" [Devijver 1982].

Features extraction is one of the most important factors in achieving
high recognition performance in character recognition systems. The extracted features
must be invariant to the expected distortions and variations that character may have in
a specific application. Also, the number of features must be kept reasonably small if a
statistical classifier is to be used (curse of dimensionality) [Duda 2001].

A feature extraction method that proves to be successful in one application
domain may turn out not to be very useful in another domain. Despite the existence of
several image characterization methods [Trier 1996], most of them can only succeed
in integrally identifying an image as a whole. Invariant moments [Gonzalez 2002] is a
famous example that may be good for globally characterizing characters as a whole,
so it can be effectively used in isolated characters recognition. However, applying this
method on the narrow differential frames over words does not lead to an omni-font,
open-vocabulary Arabic OCR systems.

Furthermore, the type of features extracted must match the requirements of the
chosen classifier. In the published literature on HMM-based Arabic font-written OCR,
the underlying features are merely simple time-domain luminosity coded features of
the frames inside the sliding window as those described by BBN [Bazzi 1999],
Gouda[Gouda 2004], and Khorsheed [Khorsheed 2007]. Such features are mainly ad

46

hoc combinations of simple partial measurements over the contents of the sliding
window like its center of gravity, the number of black/white segments, the extensions
of these segments, their relative positions within the same segment and maybe across
the adjacent segments, ..., etc. Unfortunately, such ad hoc features realized a limited
success in building truly omni font-written Arabic OCR.

As such ad hoc time domain features partially describing the differential
progress of cursively written words are able to realize limited omni-font performance
hence, neatly derived and normalized features fully and losslessly describing these
differentials can be capable to achieving a much superior performance.

One major contribution of the work presented in this thesis is the design of a
mathematically rigorous lossless differential luminosity coding based features. Our
designed features extraction method computes a features vector for each frame while
sliding through each Arabic word from right to left to produce a series of feature
vectors that are injected to the vector quantizer.

The basic philosophy of our Autonomously Normalized Horizontal
Differential Features (ANHDF) proposed is as follows; given a sequence of such a
feature, one can fully retrieve the written script with only a scaling factor as well as
the digital distortion error. The feature proposed here is a time-domain differential one

where the script contour is totally differentiated along the x-direction.

4.1. ANHDF Basic ldea

Within the HMM-based recognition methodology, the information observed
through the signal content of the thin sliding window is differential by definition,
which may hence drive us intuitively to think of a differential design for the features
vector.

Pursuing this line of thought, let each font-written word be formulated in the

x-y plane as a parametrically represented contour; C(t);x =g, (t),y = gy(t). Regarded

as an analog signal, the width of the sliding window would formally shrink into being
infinitesimally differential, and the simplest features vector to be thought of is the

total derivative of the contour along the horizontal writing direction so that..

f :% Eq. (4.1)

47

Such a features vector would be fully representative to the writing contours
which are losslessly retrievable via integration. Turning our sight back to the actual

digitized form of the writing contours; C*(X, y), the differential dx is then best

approximated by a width of a single pixel and our features vector turns into the total

difference of the digitized contour along the horizontal writing direction so that..

F,=A.C(xy) Eq. (4.2)

x=i

4.2. ANHDF Design Requirements

In the absence of closed-form expressions of the writing contours, how can
this total difference be practically encoded into a manageable features vector? This is
the non-trivial question that arises at this point. Any viable answer must satisfy the

following requirements:

I- That vector must have a finite dimensionality.

II- This dimensionality must also be fixed for any vector extracted from the contents
of the sliding window at any X =1 .

III- This dimensionality should be kept as compact as possible.

IV- All the components of that vector should be computable efficiently.

V- Feature vectors sequences corresponding to the same ligature sequences should
remain maximally invariant versus the irregularities irrelevant to the writing

concepts in the subject script; e.g. scale.

While failing to satisfy the first two requirements sets such vector designs
completely out of the HMM recognition paradigm, the failure at satisfying the second
two requirements would produce an unacceptably expensive implementation as per
the time and/or storage at both the training and recognition phases.

Meeting the fifth requirement is a primal factor towards realizing an omni (i.e.
font and size independent) performance of the sought OCR. One key idea towards
producing a features vector design satisfying such a criteria is to consider that each
single-pixel window (henceforth called a slice) at X = i contains a limited maximum

number of vertical dark segments; symbolized by N_ . For example, setting N, =4

for Arabic script is appropriately sufficient.

48

The other key idea is to differentially express each segment; Sj; in a sub-
feature vector; S, composed of definitely 4 components encoding all the
agglomerative and topological features relative to the segments in the preceding slice
at X =1—1. With a dimensionality of 4-N_ , the features vector F, derived from each

slice at X =i is then constructed by the union of its sub-feature vectors as follows..

ND

Fi=[s]_ us,| _ v.s,| 1=Us;, Eq. (4.3)

In
=1

—

4.3. ANHDF Vectors Design

To explain how to compute the above mentioned sub-feature vectors, consider

Figure (4.1) illustrating a hypothetical pixel-level view of two consecutive slices

Figure (4.1): Word slice and segments

where the segments of each slice are ordered in a bottom-up manner, | & Y, are
respectively the height and center of gravity of segment s;; , and L, & Y, are

respectively the height and center of gravity of the whole slice.
A segment is considered disconnected if it is in 8-connection with none of the
segments in the preceding slice. A whole slice is considered disconnected, if its

preceding slice is empty.

49

As all feature vectors must have definitely 4-N_ dimensions, the feature
vectors derived from slices containing less than N dark segments are padded with

nullified sub-feature vectors which are assumed to be derived from empty segments.
For any given segment, only 5 distinct topological possibilities can
exhaustively be considered. For each possibility, one formula from those numbered
4.4 to 4.8 below needs be applied to compute the sub-feature vectors whose first two
components encode the agglomerative properties while the last two encode the

topological properties of segments relative to the preceding slice.

Here are the 5 topological possible cases along with the formulae to compute

the sub-feature vectors at each case.

Case 1: For non-empty segments in the initializing slice of the whole word,

- |
s, = [yl—yl— -, —1} Eq. (4.4)

1,1 1,1
Case 2: For non-empty disconnected segments in connected slices,

y, =Y., |,
s. =|—-4—,— -2 -2 Eq. (4.5
S { X L } q. (4.5)

i-1 i-1

Case 3: For non-empty segments in disconnected slices other than the initializing one

of the word,

y,. =Y., |
s. . =|—-4—,— -3 -3 Eq. (4.6
S { C C } q. (4.6)

i-k i—k

Where the slice at x = i —K is the nearest preceding non empty slice to the slice at X=i
Case 4: For all empty (i.e. null) segments,

s,,=[0,0, 0,0] Eq. (4.7)

Case 5: Otherwise,

=Y. |
§i.i = [L’ﬁ’ssmm,jv SEND.jfl Eq (48)

50

Where the last two components of formula (4.8) respectively determine the orders of
the most bottom and top segments in the previous slice at X = i —1 which are in 8-
connection with s;;.

For example, the features vector at X = i in Figure (4.1) above can be simply
calculated, by the aid of the flowchart shown in Figure (4.2), using formulae (4.8),
(4.5), and (4.7) respectively as follows,

Ei:{[—w 8 7.1 2

—,—,13U[—,—,—2,-2]U|0,0,0,0]J]0,0,0,0
20 >20’)]U[20320: s]U[aaab[’aa]:l

=[-0.095,0.4,1,3,0.355,0.1,-2,-2,0,0,0,0,0,0,0,0].

Input Word

»
»

\ 4

Get frame

A 4

Check the frame
case (1, 2, 3, and 4)
and calculate the
features depending
on the case

l

NO Is the last
frame?

Figure (4.2): Feature extraction algorithm flowchart

It is obvious that the calculations needed to compute the proposed feature
vectors are straightforward to implement as it only uses simple arithmetical operations
never beyond additions, subtractions, multiplication and divisions. The components of

our features vector comprise both continuously analog as well as quantized values.

51

4.4. Features Normalization

From the aforementioned discussion of the design of the feature vectors, the
continuous/discrete hybrid nature of the feature vectors components is obvious. The
first and the second components of sub-feature vectors (agglomerative features) of
segments have continuous values that vary within different ranges. While the third
and the fourth components (topological features) have discrete values that vary within

another range.

10000000
1000000
100000
10000
1000
100
10
1 . A ; i i n
R e | B - -3 -1 a 1 3 7 1% 31 B3 127 235

a_) Festure values

Feature density dist.

10000000 1
1000000
100000
10000
1000

100

10

1

Feature density dist.

0 1 3 7 15 31 63 127 255
b) Feature wvalues

10000000

1000000

100000

10000

1000

100

10

1

C) -3 -2 -1 0 1 2 3 4
Festure values

F eature density dist.

10000000

1000000

100000

10000

1000

100

10

1

d -3 -2 -1 0 1 2 3 4
) Festure values

F eature density dist.

Figure (4.3): Feature values density distributions a) for the 1** component, b) for the
2nd component, c) for the 31 component and d) for the 4t component.

52

The first component population tends to follow a natural (Gaussian)
distribution with large values extended along the negative and the positive tails of the
distribution. The second component distribution coincides with the first component
nature in the positive side only, i.e. the distribution has positive tail only and it has no
negative tail.

However, the topological sub-feature vectors components (the third and the
fourth components) take only 8 discrete values [-4,-3.....3]. Figure (4.3) illustrates the
features values distributions for the four sub-feature vectors components of segments.

Due to the wide variation in the ranges of the feature vectors components as
shown in Figure (4.3), normalization of the feature vectors components is needed to
balance the weights of the different dimensions of the feature vectors while
calculating the distances between points in the features space during the clustering
and the recognition phase.

Pruning of extreme values for the first and the second components of the sub-
feature vectors is essential before normalization, as the extreme values would render
the resolution of the effective region of the features indiscriminative, which would in

turn severely ruin clustering, hence the training and the recognition phases.

53

CHAPTER 5

Vector Quantization and Clustering

For using an HMM with a discrete observation symbol density, rather than the
continuous vectors, a vector quantizer is required to map each continuous observation
vector into a discrete codebook index.

Vector Quantization (VQ) has been widely used in the speech processing field
both in the hidden markov modeling of speech for recognition and in low bit-rate
speech coding. The process of VQ enables discrete models to represent continuous
observations by mapping d-dimensional vectors in the vector space R” into a finite set
of vectors Z = {z;: i = 1, 2, ..., K}. Each vector z; is called a code vector or a
codeword (centroid) and the set of all the codewords is called a codebook. Associated
with each codeword, z;, a nearest neighbor region called Voronoi region, and it is
defined by:

V= {§ eR’ :||§—g[|| < Hg -z, }, forall j#i Eq. (5.1)

The set of VVoronoi regions partition the entire space R® such that:

0y =&

i=1

, for alli#j Eq. (5.2)

The VQ process allows the discrete model with its relatively modest
requirement for training data to represent the continuous observations at the expense

of the quantization distortion inherent in mapping all the vectors in a cell onto the

54

same label. Different elements are needed in building a VQ codebook and in
implementing a VQ procedure needs which are: a training set, a distance measure,
centroid computation and a clustering algorithm.

5.1. Training Set

In order to design the required codebook, a set of vectors (training set) is
required which should be representative of the type and distribution of vectors
encountered during normal VQ operation. A large training set is the corner stone to
building a VQ codebook The greater the diversity of the training set in covering
possible shapes of input vectors later to be processed by the VQ, the smaller the

quantization error in representing the information with a fixed-size codebook.

5.2. Distance Measure

This is the cost of reproducing an input vector x as one of the K codebook

vectors. The most common distance measure is the Euclidian distance:

d()_cnéf) = ||£‘ _2/" Eq (53)

The Euclidean distance works well when a data set has “compact” or
“isolated” clusters [Jain 1999]. The drawback of the direct use of such Minkowski
metric is the tendency of the largest-scaled feature to dominate the others. Solutions to
this problem include normalization of the continuous features (to a common range or
variance) or other weighting schemes.

The main goal behind the VQ algorithm is to determine the optimum set of K
vectors such that the average distortion in replacing each training set vectors (of size
Ns) by the closest entry in the codebook is minimized. This can be phrased

mathematically as finding the setz, for a given K such that

D, =min--$min d(x. £) Eq. (5.4)

Is minimum, where D; is the average distortion of the vector quantizer.

55

5.3. Centroid Computation

The vector space is partitioned into cells where all input vectors yielding a
common reproduction are grouped together. Each cell is equivalent to a codebook

symbol or entry, and each codebook symbol is represented by its centroidz,. The

assignment of an input vector to one of the codebook symbols is based on the
minimum distance of that vector from all symbol centroids. The centroid in the case
of a squared-error distortion measure is simply the sample mean vector of cluster C; :

5=t yx Eq. (5.5)

n. x<cj

J

where n; is the number of samples in cluster C;.

5.4. Clustering Algorithm

Clustering is the unsupervised classification of patterns (observations, data
items, or feature vectors) into groups (clusters). The reason behind this naming is that
these techniques are concerned with forming classes from training vectors without
benefit of supervision regarding class membership, or the analysis of the statistical
structure of the data. There is no systematic approach to defining the most suitable
number of classes in the codebook. The clustering problem has been addressed in
many contexts and by researchers in many disciplines; this reflects its broad appeal

and usefulness as one of the steps in exploratory data analysis [Jain 1999].

A
X
X

e B
Codewords Vectors

Voronoi
Region

Figure (5.1): A two dimensional space showing samples naturally grouped as
thirteen clusters with their representative centroid

56

The aim of clustering is to find some structure in the distribution of a set of
vectors in d-dimensional Euclidian space. In one or two dimensions this can easily be
visualized, for example in Figure (5.1) the sample vectors are clearly distributed as
thirteen clusters. In many pattern recognition problems the dimensionality is much
higher and it becomes impossible to visualize the space.

There are two main types of clustering algorithms; the hierarchical clustering
algorithms and the partitional clustering algorithms. In hierarchical clustering
algorithms, each vector is initially a separate cluster. Then, at each step of the
algorithm the two most similar clusters, based on a predefined distortion measure, are
merged until the desired number of clusters is achieved. In the partitional clustering
algorithms, a fixed number of clusters or classes is used. In each iteration training
vectors are reassigned according to a predefined distortion measure until a stable
partitioning of the vectors is achieved. The two most common methods of partitional
clustering, the K-means and the LBG algorithms are discussed below.

5.4.1. K-Means Algorithm

The K-means algorithm can be considered as the workhorse of clustering
algorithms. The K-Means algorithm is commonly associated with the minimization of
a squared error criterion. K refers to the number of classes in the codebook. The
algorithm works as follows:

1. Perform an initial selection of centroids.

2. Iterate on samples, for each sample,
Find the closest centroid.
Assign the sample to the corresponding cluster.
Recompute the centroid of that cluster.

3. Repeat step 2 until a convergence criterion is met.

Typical convergence criteria include terminating after an iteration where the
cluster memberships of the samples is unchanged, terminating after an iteration where
the centroids are left unchanged, terminating after an iteration where the value of the
objective function is unchanged, or terminating after a maximum number of iterations
is reached. When the data set is large, convergence can be somewhat slow, and the
above terminating criteria are substituted by threshold criteria (e.g., terminating after

an iteration where the objective function decreases by less than a threshold).

57

This algorithm systematically decreases the overall distortion, by updating the
codebook. The distortion sometimes converges, however, to a local optimum that may
be significantly worse than the global optimum. Specifically, the algorithm tends to
gravitate towards the local optimum nearest the initial codebook. A global optimum
may be approximately achieved by repeating this algorithm for several types of
initializations, and choosing the codebook having the minimum overall distortion
results.

This algorithm has been experimentally observed that it is dependant on the
order in which the patterns of the training set are selected. Hence it is useful for the

applications where clustering must be done online (Duda 2001).

5.4.2. LBG Algorithm

A method that closely resembles the K-Means algorithm (to the point that it is
sometimes called K—Means) is the clustering algorithm of Linde, Buzo, and Gray
(also known as LBG, or as the Modified Lloyd Algorithm) [Linde 1980]. The
algorithm works as follows,

1. Perform an initial selection of centroids.
2. Iterate on samples: for each sample
Find the closest centroid.
Assign the sample to the corresponding cluster.
3. After iterating on all samples, recompute the centroids using the new assignment of
points to clusters.
4. Repeat step 2 until a convergence criterion is met.

As the LBG algorithm perform a batch training not an online training as that
of the original K-means algorithm, LBG has a distinct computational advantage: the
computation of distances between points and centroids can be done more efficiently,
because neither points nor centroids change during the computation.

The LBG algorithm compensates for the sensitivity of the of the original K-
means algorithm to the initial values of the centroids by using a “splitting” method for
designing the quantizer from scratch. This initialization requires that the number of
code words is a power of 2. The procedure starts from only one codeword (global

mean of the training set) that, recursively, splits it in two distinct codewords (Linde

58

1980). More precisely, the generic m™ step consists in the splitting of all vectors
obtained at the end of the previous step.
The splitting criterion is shown in Figure (5.2). It starts from one codeword z.

It splits this vector into two close vectors z+¢& and z—¢& where & is a fixed

/ ®

s 'y z+
/! ! 2o
/ i
® mp
V4 r
i z i
ry V4
/ ¢
z-¢

Figure (5.2): LBG centroid splitting

perturbation vector.

The LBG has a big chance to achieve a better local minimum near the global
one and does not stuck to a local minimum that is nearest to the initial randomly
chosen codebook as that of the original K-means algorithm.

The reasons behind the popularity of the LBG algorithm are [Jain 1999]:

(1) Its time complexity iSO(N_-K - N,), where N; is the number of patterns, K is the

number of clusters, and N, is the number of iterations taken by the algorithm to
converge. Typically, K and N _ are fixed in advance and so the algorithm has

linear time complexity in the size of the data set.

(2) Its space complexity is O(K + Ng). It requires additional space to store the data
matrix. It is possible to store the data matrix in a secondary memory and access
each pattern based on need. However, this scheme requires a huge access time
because of the iterative nature of the algorithm, and as a consequence processing
time increases enormously.

(3) It is order-independent; it generates the same partition of the data irrespective of

the order in which the patterns are presented to the algorithm.

5.5. Clusters Analysis

An important problem in clustering is how to decide what is the best set of

clusters for a given data set, in terms of both the number of clusters and the

59

membership of those clusters especially in high dimensions. Generally, it has to be
estimated from the data and usually selected by some heuristics in practice depending
on the application [Duda 2001].

An approach in estimating the optimal number of clusters is to use an
objective function such as the normalized mean square error (Ex) between the training
data samples and the centroids of a given codebook [Tibshirani 2001]. Figure (5.3)
shows a typical plot of an error measure for a clustering procedure versus the number
of clusters K employed; the error measure Ex decreases monotonically as the number
of clusters K increases, but from some K on the decrease flattens markedly. The

location of such an "elbow™ indicates the appropriate number of clusters.

- .

2
Ex

number of clustersK

Figure (5.3): A two dimensional data with its normalized mean square error function
(Ek) on the right plot

However this elbow represents a global minimum of the error over the

centroids and doesn't address the degree of adequacy between the distribution of the
features and the distribution of their representative codebook centroids. This measure
is also a computationally expensive and time consuming measure.

When clustering is just used as a preprocessing step to reduce the complexity
of the data, as in a classification task, K can be chosen pretty large (in order not to
loose too much information about the data). However, it must not be too large to be
afforded later on (trade-off between computational costs of next steps and number of
clusters) and to avoid over clustering.

The final classification results using the testing samples or cross validation is

an optimum objective method used to estimate the best number of clusters. However,

60

using this method over a wide range of K is a time consuming process. Hence, in our
work we develop a subjective method for measuring the quality of different sets of
clusters by the visualization of the adequacy between the codebook centroid

distribution generated and the distribution of the data used in clustering.

5.6. The Adequacy Test

As it is infeasible to visualize the multidimensional feature vectors and their
representative codebook distributions if d>3 (as that in Figure (5.1) for the two
dimensional feature vectors); we can use the projections of these distributions in the
d-dimensions as a good visualization aid for these distributions. Our aims behind the
visual representations of the features population density distributions among with the
codebook density distributions projected in the d-dimension are:

1. Estimation of the suitable size of the training set that to be used later in the
codebook design. This can be done by watching the variations in the features
distribution projections in the d-dimensions that occur due to increasing the
training data set size and choosing the size when no further variations occur after
increasing that size (data saturation occurs).

2. Estimating the appropriate codebook size by choosing the codebook that best
matches the distributions of the features in all dimensions.

To achieve our aims, two plots with certain scales are developed. These plots
help us to estimate the best training data set size and the codebook size in order to
achieve the least WER from our OCR recognition system without doing neither
computationally expensive nor time consuming measures. The two plots are described

as follows:

e The first plot:

It represents the normalized feature density distribution versus the feature values

projected on each dimension of the feature vector as shown in Figure (5.4a), where:

- The x-axis represents the feature values in each dimension of the feature
vector. In some dimensions 95 % of the feature values are localized within
the normalized range [-1, 1] while the rest of the feature values are
expanded outside this compact range. In order to view all the range of the

features values a companding scale is developed. For the other dimensions,

61

Marmalized feature density dist.

all the features values are localized within the normalized range [-1, 1], so

a linear scale is used. The used scaling functions including the companding

and the linear functions can be mathematically described as:

£ (x) = Sign(x)-log, (1 + |x|)

=X

ford =4i+14i+2
ford =4i+34i+4

Eqg. (5.6)

where x is the feature value, d is the & dimension of the feature vector and

ic{0...3}

- The y-axis represents the feature density distribution in log;o scale to cope

with the large variations of its values.

1000000
100000
10000
1000
100

10

1

127 -6 -3 -13 -7

2043 T T T T

-3 -1 0 1 3 7 15 Gl 63
Marmalized Festures

127

1024
a2t
236 +
128 +

Mormalized ':E'ma density dist.
== J M
om kA

WL 1 I 11T NI T

LT I II.lILI_ﬂll

127 -8 -H -13

-3 -1 0 1 3 T 15 1 63
Marmalized Festures

Figure (5.4): a) Normalized Feature density distribution projected on d=1,
b) Normalized Code book (size 128) density distribution projected

on d=1.

62

e The second plot :

It represents the normalized codebook density distribution versus the feature
values projected on d™ dimension of the feature vector as shown in Figure (5.4 b),
where:
- The x-axis is the same as that of the first plot.
- The y-axis represents the codebook density distribution in log, scale to
cope with the large codebook sizes of order power of 2 generated by LBG

algorithm.

Figures (5.5-5.20) below show the normalized features and codebook
distributions projected on all of the 16 dimensions of our proposed feature vector. In
each dimension, the normalized feature density distribution is shown in the first plot.
Also, various normalized codebook sizes (codebook sizes =2048, 1024, 512 and 256)
density distributions are plotted consecutively below the first plot.

It is obvious from the figures that, in all dimensions, the adequacy degree
between the codebook centroid distributions and the normalized feature density
distributions increases with the increase in the codebook size, taking into
consideration the effect of the cross correlation between different feature vector
components . It is observable that the tails of the feature density distribution in each
dimension is not well represented by the codebook centroids for the small codebook
sizes as most of the centroids are attracted to represent the peaks of the distribution.
The tails are well represented with the codebook centroids as the codebook size

increases.

63

Marmalized feature density dist.

1000000
100000
10000
1000
100
10
1 ; . . , h
A2y B3 -H 15 -7 -3 -1 1 1 3 7 15 iy 23] 127
Marmalized Features
ki
T 2045
E 1|:|:24 | 1 1 1 1 1 1 1 1 1 1 1 1 1 i
- =
5 286t =
- 128 i
g B4 | =
o E[]
U E L -
T 4t -
e 2r i
e 1
Z'Z' 27 B3 -H 15 -7 -3 -1 1 1 3 7 13 iy (53] 127
Marmalized Features
ki
T 2045
= 102
= 52
5 236
= 128
=+ b4
iy
] 16
g
T 4
= 2
E 1
2'2' 27 B3 -H 15 -7 -3 -1 1 1 3 7 13 iy (53] 127
Mormalized Features
g
= 2048
T o104
= 452
: B
3 @
n
o g
- g
o 4
= 2
E 1
= A2y B3 -H 15 -7 -3 -1 1 1 3 7 15 iy 23] 127
Mormalized Features
ki
= 2045
T o100
= 512
i 3
=, B
o 32
0 16
] 8
o 4
i 2
E 1
zD A2y B3 -H 15 -7 -3 -1 1 1 3 7 15 iy 23] 127
Mormalized Features
Figure (5.5): Normalized features density distributions with its codebooks, of sizes

2048, 1024, 512, 256, density distributions projected on d=1

64

Maormalized feature density dist.

1000000
100000
10000
1000
100

10

-1 i 1 3 7 15 Ky (a3} 127
Mormalized Features

. . 1 |
-1 i 1 3 7 15 Ky (a3} 127
Mormalized Features

Mormalized CESm density dist.

-1 i 1 3 7 15 Ky (a3} 127
Mormalized Features

Mormalized CEu:m density dist.

-1 n 63 127

Marmalized ':EL;-P density dist.

Mormalized Features

==

=IO

b 0 T T) Rl (Y ETOY

= b d s DOk = 2O 00

-1 i 1 3 7 15 M B3 127
Mormalized Features

Marmalized ':Efs:-. densaity dist.

Figure (5.6): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=.2

65

Marmalized feature density dist.

1000000
100000
10000
1000
100

10

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

Vet L

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

Mormalized CE&-B density dist.
(1]
RS

2045

1024
a1z
236
125

G4
32

15 . .J\H\A\M . f\ﬂ J

= e T0

Mormalized ':E'u:c; density dist.

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

: ; 1 . H
-1 -0.75 -05 -0.25 i 025 ns 0.rs 1
Mormalized Features

Mormalized CE‘;I“ density dist.
(1]
RS

2045

1024
a12

123
G4
32
16

= pod 2 0

Moadiala,

Mormalized ':553 density dist.

-1 -0.75 -05 -0.25 i 025 ns 0.rs 1
Mormalized Features

Figure (5.7): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=3

66

Marmalized feature density dist.

1000000

1

Mormalized CE‘;I: density dist. Mormalized ':E'u:c; density dist. Mormalized CE&-B density dist.

Mormalized ':553 density dist.

Q0000
10000
1000
100
10

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

%E- . M%. . h,nJ\M/

-1 -0. TS 045 -0.25 i 025 0.rs
Mormalized Features

2045
1024
a1z

% %MH%M Ad,. Mo

-0.75 045 -0.25 025 0.rs
Nurmallzed Festures

1%% \\V\A mj\ H\\N’“M/\ TP

-0.75 -05 -0.25 025 0.rs 1
Narmallzed Festures

= P

2045
1024
a12

123

1 .\'\f\ nnrxﬂﬁmﬂﬂ./“‘_/\v =)

-1 -0.75 -05 -0.25 025 A 0.rs 1
Narmallzed Festures

el E

Figure (5.8): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=4

67

Marmalized feature density dist.

1000000
100000
10000
1000

Mormalized CE‘;I: density dist. Mormalized ':E'u:c; density dist. Mormalized CE&-B density dist.

Mormalized ':553 density dist.

—=h

i [Lo

=) kI =

= P QOCE-D = 0 b0

1

el [T }
[L T} K O ITCY
= Pl 5 Q0 2 OO P OO

aa

B3 -3 15 -7 -3 -1 i 1 3 7 15 Ky (a3} 127
Mormalized Features

B3 -3 15 -7 -3 -1 i 1 3 7 15 Ky (a3} 127
Mormalized Features

B3 -3 15 -7 -3 -1 i 1 3 7 15 Ky (a3} 127
Mormalized Features

Lo
[
-1

IlIIIJIlIIIJMLLM“/LN"ﬂHHHIIJII‘ DLLLLL Bt imn]
S I o1 37 15 3 B3 12

B3 -3 =15 7

Mormalized Features

O I T A O Y P | T T

Lo
[
-1

63 -3 15 -7 -3 -1 i 1 3 7 15 M B3 127
Mormalized Features

Figure (5.9): Normalized features density distributions with its codebooks, of sizes

2048, 1024, 512, 256, density distributions projected on d=5

68

Marmalized feature density dist.

1000000
100000
10000
1000
100

10

-1 0 1 3 7 15 1l (o] 127
Mormalized Features

-1 0 1 3 7 15 1l (o] 127
Mormalized Features

Mormalized CE&-B density dist.
=
L x])

% 2045

= 102

B o2

5 286

- 12

=+ B4

2 32

o

5] 16

g

T 4

i 2

E 1

ZD -1 0 1 3 7 15 1l (o] 127
Mormalized Features

ki

= 2048

B T

= 12

: B

3 2

el

T

- g

o 4

=]

= 2

g JM“MW |

E L DICCLII et o it

E -1 0 1 3 7 15 M B3 127
Mormalized Features

ki

= 2045

B T

&= 512

: B

S B4

ufi 32

0 16

= g

o 4

e)

m 1 |

E | I T d LI 1

§ -1 0 1 3 7 15 M B3 127

Mormalized Features

Figure (5.10): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=6

69

Marmalized feature density dist.

1000000
100000
10000
1000
100

10

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

[——a
=

b

=]
.

: : . : !ﬂl i h
-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

Mormalized CE&-B density dist.
(1]
RS

2045
1024
a1z

]
128
Bd
32
16

-1 -0.75 A -III 25 0. 25 ns 0.rs 1
Nurmallzed Festures

[AW

-0.75 -05 -0. 25 i 025 ns 0.rs 1
Mormalized Features

= e T0

Mormalized ':E'u:c; density dist.

;.:j

Mormalized CE‘;I“ density dist.
(1]
RS

2045
1024
a12

123
G4
32

15 WWJ\N ,/L RE ,A L,

-1 -0.75 -05 -0.25 0. 25 ns 0.rs 1
Narmallzed Festures

el E

Mormalized ':553 density dist.

Figure (5.11): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=7

70

Marmalized feature density dist.

1000000
100000
10000
1000
100

10

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

Ak

: : . : i
-1 -0.75 045 -0.25 025 A 0. TS 1
Nurmallzed Festures

Mormalized CE&-B density dist.
(1]
RS

2045

1024
a1z

]
128
Bd
32
16
oy AT f\mr

= e T0

Mormalized ':E'u:c; density dist.

-1 -0.75 A -III 25 025 ns 0.rs 1
Nurmallzed Festures

-1 -0. ?5 -05 -III 25 0. 25 A 0. ?5 1
Narmallzed Festures

Mormalized CE‘;I“ density dist.
(1]
RS

2045

1024
a12

123

G4
32

1 WAL iﬁh I\ e

= pod 2 0

Mormalized ':553 density dist.

-1 -0.75 -05 -0.25 0. 25 A 0.rs 1
Narmallzed Festures

Figure (5.12): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=8

71

Marmalized feature density dist.

1000000
100000
10000
1000

Mormalized CE‘;I: density dist. Mormalized ':E'u:c; density dist. Mormalized CE&-B density dist.

Mormalized ':553 density dist.

—=h

i [Lo

=) kI =

= P QOCE-D = 0 b0

1

el [T }
[L T} K O ITCY
= Pl 5 Q0 2 OO P OO

aa

B3 -5 -15 -r -3 -1 n 1 3 7 15 31 63

B3 -3 15 -7 -3 -1 i 1 3 7 15 Ky (a3}
Mormalized Features

127

B3 -3 15 -7 -3 -1 i 1 3 7 15 Ky (a3}
Mormalized Features

127

O I 1 JIIHI »rtﬁll Jlllll T T T AT

Lo
[
-1

63 -3 15 -7 7 15 M B3
Narmallzed Features

127

Lo
[
-1

63 -3 15 -7 15 31 53
Narmallzed Features

127

Figure (5.13): Normalized features density distributions with its codebooks, of sizes

2048, 1024, 512, 256, density distributions projected on d=9

72

Marmalized feature density dist.

1000000

1

Mormalized CE‘;I: density dist. Mormalized ':E'u:c; density dist. Mormalized CE&-B density dist.

Mormalized ':553 density dist.

Q0000
10000
1000
100
10

=2 OO

2045
1024
a12

125
Ed

==L
=2 Qo0

el [T }
[L T} K O ITCY
= Pl 5 Q0 2 OO P OO

—=h

i [Lo

=) kI =

= P QOCE-D = 0 b0

-1

0 1 3 7 15 1l (o] 127
Mormalized Features

-1

1L Lumllu Ll

n 1 3 7 63 127

Mormalized Features

Mlm‘u']l IIIII|lI||II l I Y O I

0 1 3 7 15 1l (o] 127
Mormalized Features

-1

Hﬂ‘h‘.“n'nl‘IHM]h T T T IMII‘ IIIHI [L 1

1 3
Mormalized Features

31 63 127

l

Ll hl. IJ.HI.II.I | S I Y I : [1

-1

0 1 3 7 15 M B3 127
Mormalized Features

Figure (5.14): Normalized features density distributions with its codebooks, of sizes

2048, 1024, 512, 256, density distributions projected on d=10

73

Marmalized feature density dist.

1000000

1

Mormalized CE‘;I: density dist. Mormalized ':E'u:c; density dist. Mormalized CE&-B density dist.

Mormalized ':553 density dist.

Q0000
10000
1000
100
10

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

Al ﬂ/

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

2045
1024
a1z
236
125
G4
32

L b 4

-1 -0.75 045 -0.25 0. 25 0.rs
Nurmallzed Festures

= e T0

W\Mﬂﬁm f\,ﬁf\ h I

-0.75 -05 -0.25 0. 25 A IZI ?5 1
Narmallzed Festures

2045
1024
a12

123
G4
32
16

= pod 2 0

MMMM ok A

-0.75 -05 -0.25 i 0. 25 A 0.rs
Mormalized Features

Figure (5.15): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=11

74

Marmalized feature density dist.

1000000
100000
10000
1000
100

10

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

1024
2
256
128
Gd
16
g
4
; A A
1 . -] H . A Py -ry

-1 -0.75 045 -0. 25 025 ns 0.rs 1
Nurmallzed Festures

Mormalized CE&-B density dist.
(1]
RS

2045

1024
a1z
236
125

G4
32
16

= e T0

ﬁ.l 2 h il | |ﬁ. h HI

Mormalized ':E'u:c; density dist.

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

W\hrﬂ“\,f\n P A At e

-0.75 -05 -0.25 IZI 025 ns 0.rs 1
Mormalized Features

Mormalized CE‘;I“ density dist.

2045

1024
a12

123
G4
32
16

= pod 2 0

/\MMMM o it ey | P]\

Mormalized ':553 density dist.

-0.75 -05 -0.25 i 025 ns 0.rs 1
Mormalized Features

Figure (5.16): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=12

75

Marmalized feature density dist.

1000000
100000
10000
1000

Mormalized CE‘;I: density dist. Mormalized ':E'u:c; density dist. Mormalized CE&-B density dist.

Mormalized ':553 density dist.

—=h

i [Lo

=) kI =

= P QOCE-D = 0 b0

1

el [T }
[L T} K O ITCY
= Pl 5 Q0 2 OO P OO

aa

B3 -5 -15 -r -3 -1 n 1 3 7 15 31 B3 127

B3 -3 15 -7 -3 -1 i 1 3 7 15 Ky (a3} 127
Mormalized Features

B3 -3 15 -7 -3 -1 i 1 3 7 15 Ky (a3} 127
Mormalized Features

L1 i HIII.\f‘ﬂIHIII. I T O

Lo
[
-1

63 -3 15 -7 -3 -1 i 1 3 7 15 M B3 127
Mormalized Features

Lo
[
-1

63 -3 15 -7 -3 -1 i 1 3 7 15 M B3 127
Mormalized Features

Figure (5.17): Normalized features density distributions with its codebooks, of sizes

2048, 1024, 512, 256, density distributions projected on d=13

76

Marmalized feature density dist.

1000000
100000
10000
1000
100

Mormalized CE‘;I: density dist. Mormalized ':E'u:c; density dist. Mormalized CE&-B density dist.

Mormalized ':553 density dist.

1

1]

=2 OO

2045
1024
a1

125

—=h

i [Lo

=) kI =

= P QOCE-D = 0 b0

el [T }
[L T} K O ITCY
= Pl 5 Q0 2 OO P OO

g

==L
=2 Qo0

2

rl

1%‘%“““ ‘M@LMMM STIPRE RS

|IJI

(o] 127
Mormalized Features
J“II|.IJIII|I‘I|.|II|.I|III L 111
-1 0 1 3 7 15 1l (o] 127
Mormalized Features
III||.II L U111 [
-1 0 1 3 7 15 1l (o] 127
Mormalized Features
LMM‘HMHLL I.IMIHIHHIH | | [J11 |1
1 3 7 15 M B3 127
Mormalized Features
L’NMH_EH - b d |] | L1 l.
1 3 7 15 M B3 127

Mormalized Features

Figure (5.18): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=14

77

Marmalized feature density dist.

1000000
100000
10000
1000
100

10

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

1024
512
256
124G
G4
16
g
4
2

1 ’ ! . I

-1 -0.75 045 -0. 25 0. 25 A 0.rs 1
Nurmallzed Festures

Mormalized CE&-B density dist.
(1]
RS

2045

1024
a1z
236
125

G4
32

15 hml\m MA 1oh A

= P

Mormalized ':E'u:c; density dist.

-0.75 A -0.25 0. 25 A 0.rs 1
Nurmallzed Festures

7 LT 8 0

-0.75 -05 -0.25 i 025 ns 0.rs 1
Mormalized Features

Mormalized CE‘;I“ density dist.

2045

1024
a12

123
G4
32
16

= pod 2 0

Mormalized ':553 density dist.

R g 1 S O 0 RO SRR & YN |
0.5

-1 -0.75 -0, -0.25 i 025 ns 0.rs 1
Mormalized Features

Figure (5.19): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=15

78

Marmalized feature density dist.

1000000
100000
10000
1000
100

10

-1 -0.75 045 -0.25 i 025 ns 0.rs 1
Mormalized Features

1024
a1z
236
125
G4
16
g
: Pl aron)\w
1 : . : h ,F[H

-1 -0.75 045 -0. 25 025 0.rs 1
Nurmallzed Festures

Mormalized CE&-B density dist.
(1]
RS

2045

1024
a1z
236
125

G4
32

L bl WA Lok

= P

Mormalized ':E'u:c; density dist.

-0.75 A -0.25 0. 25 0.rs 1
Nurmallzed Festures

Uhﬁwrﬂﬂh R | B Mf

-0.75 -05 -0.25 i 025 ns 0.rs
Mormalized Features

Mormalized CE‘;I“ density dist.

2045

1024
a12

123
G4
32
16

= pod 2 0

Mormalized ':553 density dist.

R g 1 S O 0 AR PP, SN |
0.5

-1 -0.75 -0, -0.25 i 025 ns 0.rs 1
Mormalized Features

Figure (5.20): Normalized features density distributions with its codebooks, of sizes
2048, 1024, 512, 256, density distributions projected on d=16

79

CHAPTER 6

HMM from ASR to OCR

The output of a real-world process may be observed in a form of a continuous
or discrete signal. The objective is to build a signal model that explains and
characterizes the occurrence of the observed output. The domain of possible signal
models can be dichotomized into: the deterministic models and the statistical models
[Rabiner 1989]. The deterministic models exploit some known properties of the
signal, and estimate values of the parameters of the signal model. In the statistical
models, the signal can be well characterized as a parametric random process, and the
parameters of the stochastic process can be estimated in a precise manner. An
example of such statistical models is Hidden Markov Models.

HMM is a powerful tool in the field of signal processing. HMM’s have been
successfully used in speech recognition [Rabiner 1986, 1989]. The application of
HMM’s has been extended to include text recognition [Chen 1994], [Bunke 1995],
[Steinherz 1999]. This is due to the similarities between speech and written words
since they both involve co-articulation, which suggests the processing of symbols

with ambiguous boundaries and variations in appearance.

6.1. ASR and OCR Problems Analogy

Solutions that tackle ASR and font-written OCR are typically based on the
concept of sub-word units (phonemes and graphemes) that are concatenated to form
utterances and words respectively.

In ASR; the speech signal, which is a 1D function of time, is sliced into a
sequence of windows (called frames) and a features vector for each frame is

computed. Frame widths should not be too wide or too narrow [Cho 1995]. When the

80

former case holds true, a large portion of the computed feature vectors would be taken
from inter-phoneme regions leading to the inability to neither build stable models nor
recognize the basic units. When the latter condition holds true, the computed feature
vectors would be unable to reflect the local characterizing properties of the signal.
(See Figure (6.1))

As the phoneme widths typically range between 40-to-250 ms, and as the
digital acquisition of speech signals are done at about 44 k bits/s at 256 PCM, a
compromise is easily made in speech and frame widths are typically chosen to be
within 5-to-10 ms where there are enough samples to reflect the local nature of the
signal. In the world of digital speech processing, Mel Frequency Cepstral Coefficients
(MFCC’s) [Davis 1980] are the well established and widely agreed-upon features to
characterize the local identity of the speech signal.

On the other hand, the OCR problem is a one of recognizing a 2D text image
signal, with the sliding window moving on the writing direction (from right-to-left in
the case of Arabic) and having a fixed height equal to that of the word/line being
analyzed. (See Figure (6.1))

Selecting the frame width is subject to the same compromise mentioned just
above while talking about speech frames. Taking into consideration the typical
printing resolutions around 1200 dpi, the scanning resolutions ranging from 300 to
600 dpi and the most frequently used font sizes ranging from 10 to 24, it is then easy
to infer that OCR frame widths should not exceed 4 pixels.

'

Writing direction =

Figure (6.1): Sliding window over a speech signal and over a text image bitmap

Despite the existence of well crafted image characterizers that are proven
effective in discriminating images as a whole [Pratt 1991], [Gonzalez 2002], none of
them is very successful to describe text images differentially through a sequence of
narrow frames inside the sliding window. Here comes the main challenge of applying
the OCR-to-ASR analogy; the absence of a standard features set that are able to

locally identify text-image signals in a way that reveals the essential writing concepts

81

so that the smallest variance possible is preserved over the feature vectors obtained
from different fonts/sizes of the same sequence of graphemes.(described in chapter 4).

Given the OCR-to-ASR analogy, the widely used approach to solving the ASR
problem is then intuitively quoted for solving the Arabic font-written OCR one.

The writing process, like speech and like any other form of language, starts in
the mind of some human writer when he/she composes a message to be delivered to
his/her intended reader(s). The ultimate goal of this process is to recognize the
message as intended by analyzing the message as observed. This is illustrated by the

famous noisy channel communication model shown in Figure (6.2).

Selglf;r:ce Message produced Message Observed Mesgage Sggﬁgﬁ
Producer Sequence Channel Sequence Receiver n
K 0 Listener/ Reader |14
Speaker/Writer - Speech/Text -

Figure (6.2): Noisy channel communication model where I is the intended message
composed by the producer, and O is the message as observed by the
receiver.

The distortion caused by the noisy channel typically leaves us with the
ambiguity problem of having multiple possible perceived sequences from which we
have to recognize the intended message sequence. While building a fully rule-based
language recognizer is almost impossible due to the randomistic nature of the channel
distortion, as well as our typical incomplete knowledge of the laws that govern the
linguistic phenomenon, the goal of a language recognizer (like OCR) of finding the
intended sequence (graphemes/ligatures in the case of OCR) can practically be
achieved stochastically [Attia 2002].

The maximum a posteriori probability (MAP) approach is one of the most

widely-used and mathematically well-founded methodologies in this regard.
According to this methodology, the elected message sequence EA is selected to
maximize the a posteriori probability P(W|O) over all the possible (producible)

messages which is formally expressed as

W= argmax{P(Z | Q)} = argmax
v

vw

{P(Q |W)- P(W)

0) } = argvrélaX{P(Q \W)- P(W)}

Eq.(6.1)
Where, P(O|W) is called the likelihood probability which models the forward

conditional stochastic relation between intended/input graphemes and their

82

consequent observations, and P(W) is called the language model that gives the a priori
marginal probability of any possible sequence of ligatures. The a priori probability of
the observations P(O) can obviously be omitted from the maximization formula as it
is independent of W. [Attia 2002]

In the proposed OCR system - like the ASR one - the likelihood probability
term P(O|W) is modeled via the public widely-used stochastic methodology of

HMM that has dominated the world of digital speech processing — especially ASR —
during the past two decades. The success of HMM in this regard is appealing for
researchers to deploy it as a suitable tool for cursive script recognition for the

following reasons [Bunke 1995]:
e HMM’s are stochastic models that can cope with noise, and pattern variations

occurring due to different fonts, sizes, and styles.

e The number of observations representing an unknown input grapheme/ligature or
word may be of variable length, which is a fundamental requirement in cursive
script as the lengths of individual units may greatly vary.

e The HMM recognition process implemented via search trellis does not only
produce the MAP optimal sequence, but also the boundaries of the units
comprising this sequence. In Arabic font-written OCR, this eliminates the need for
any heuristic graphemes segmentation processes which are typically not only
difficult but also error-prone.

e There are rigorously-studied, stable, and computationally efficient algorithms for
both the training, and the recognition using HMM’s. Moreover, off-the-shelf
implementations of such algorithms are easily affordable.

Continuous HMM’s model a sequence of continuous-valued observations. In
order to do this, the model typically represents the observation pdf as a mixture of
Gaussian distributions. This results in a large number of free parameters to be
estimated during the training process hence such models typically have a very large
requirement for training data. However, discrete HMM’s are suitable for modeling
processes that emit a sequence of discrete-valued observations with small number of
free parameters to be estimated during the training process.

Upon the examination of large populations of our proposed feature vectors, it

got clear that it is hard to find mixtures of Gaussians that properly represent that kind

83

of hybrid data. So, the decision is made to adopt discrete HMM’s rather than its other
versions.

To build an OCR system that is able to recognize an open-vocabulary Arabic
font-written text with M different graphemes, we construct M different HMM’s each
of them represents one of the Arabic font ligature. To keep HMM search lattices at
reasonable widths, which in turn reduces the computational complexity hence the
recognition WER [Bunke 1995], the word (not the line) has been chosen in our work

as the major unit for training and recognition.

6.2. Theory and Elements of Discrete HMM

HMM is a stochastic process with an underlying finite-state structure. Each
one of these states is associated with a random function. Within a state the signal
possesses some measurable, distinctive properties. Within a discrete period of time,
the process is assumed to be in some state and an observation is generated by the
random function of that state. The underlying Markov chain changes to another state
based on the transition probability of the current state. The sequence of states is
hidden, only the sequence of observations produced by the random function of each
state can be seen.

Consider a discrete word recognizer system that at any instance of time may
only be in one of its state set. The system undergoes a change from one state to
another according to a set of probabilities associated with each state. These transitions
take place in regular spaced discrete periods of time. In other words, a system transits
from state S; at time ¢ to a state S; at time ¢+;, = 1,2,3, ..N (no. of observations) and
1,j=1,2, ..., L (no. of states/word).

The most important and difficult element to be decided is the number of states,
L,, in the grapheme model, since there is no systematic approach to do so. As
mentioned before, at each time unit ¢ the model makes a transition from one state to
another or may remain in the same state. This transition is based on a transition
probability related to the previous state. This is called a first-order HMM. When a
state is entered, an observation output is produced based on an observation probability
related to the random function associated with that state. In general, states of an HMM
are interconnected based on the topology of the HMM as discussed in section 6.3.

Another important element to be decided is the number of observation

symbols K per state. The observation symbols correspond to the physical output of the

84

system being modeled. For our developed character recognition system, the
observations are semi-continuous and are produced as vectors. In this case the vectors
are quantized into one of the permissible sets using VQ. Individual symbols are
denoted as z,,Z,,........Z, .

The rest of the elements which characterize the discrete observation HMM are:
1. The initial state probability. This is the probability of being in state S;at r = 1.

=l =P(S a t=1) Eq. (6.2)

2. The state transition probability. This is the probability of being in state S; at time ¢,
then transiting to state S; at time ¢ + 1.

A=la, =P(S, at t+1/S at t) Eq. (6.3)
3. The observation symbol probability. This is the probability of observing symbol Z,

while the model is in state j at time «.
B={p(k)=Plz, at t/S ar 1) Eq. (6.4)

Considering the previous elements mentioned, a complete specification of an
HMM requires specifying two model parameters, L, and K, the observation symbols,
and three sets of probability measures A, B and &t;. The compact notation to be used to
refer to a grapheme HMM is A,(4,B,m). This notation is reduced to 44,(A,B) in case of
using the left to right (L-R) HMM topology.

6.3. HMM Topologies

By placing certain restrictions on the structure of the model, the model will tend
to behave differently. A model in which every state could be reached (in single step)
from every other state of the model is known as an ergodic model, or fully connected

model. An example of ergodic model is shown in Figure (6.3).

oy

agy 44

Figure (6.3): Ergodic Hidden Markov Model

85

For certain types of signals, other types of models have been shown to model
that signal's properties better [Rabiner 1989]. In case of time variant signal, the L-R
model, also known as Bakis model, is such a model. The underlying state sequence of
this type of model is forced to start in state 1 (i.e. the leftmost state) and can only
make transitions to higher states (i.e. to the right) or back to the present state at time
passes. In addition, the model must end in state L, (the rightmost state). This allows
the sequence of states to represent the passage of time and has become the most
popular form of HMM used in speech recognition and character recognition. An

example for L-R model is shown in Figure (6.4).

aj1] agg 44

Figure (6.4): An Example of Left-to-Right HMMs

The functional property of all L-R HMM’s is that the state transition
coefficients have the property:
a;=0, Vi<i Eq. (6.5)
1.e., no transitions are allowed to states whose indices are lower than the current state.
Furthermore, the initial state probabilities have the property:

0, 1#1
= Eq. (6.6)
1, i=1

6.4. The Basic Problems of HMM’s

Given the form of the grapheme HMM, there are three basic problems of
interest that must be solved for the model to be useful in our application. These
problems are the following:

Problem 1 (The Evaluation Problem):
Given a word model (Ay), concatenation of grapheme models A,, and a sequence

of observations Q=(Q ,0,,...,0 N), what is the probability that the model

generates the observations P (O | Ay)?
Problem 2 (The Decoding Problem):

Given a set of models (2,) and a sequence of observations O = (Q 5 0,,...,0,) ,

what is the most likely state sequence in these models that produces the

observations?

86

Problem 3 (The Training Problem):

Given a model (Ay) and a sequence of observations O :(Q ,0,,...,0 N), what

should the model parameters be to increase the probability of generating the

observations?

The evaluation problem can be viewed as a way of scoring how well a given
models matches a given observation sequence. So it is very useful in the case in which
we are trying to choose among several competing models.

The decoding problem is one in which we attempt to uncover the hidden part of
the model, i.e. to find the best matching state sequence given an observation sequence.
So we try to find the best state sequence not the correct state sequence, we need an
optimality criterion to solve it. The choice of criterion is a strong function of the
intended use for the uncovered state sequence.

The training problem is the most important of the three problems. If we could
solve this problem, we would have the mean to automatically learn the parameters

given an observation sequence.

6.4.1. Model Evaluation Problem

In order to evaluate models, we must first calculate P (O | Ay,), the likelihood
that a sequence of observations, O, were produced by a given word model A,. For any
observation sequence produced by a model, and a known sequence of states followed
to produce this sequence of observations, the probability of the model producing these
observations and following this state sequence in case of L-R HMM can be calculated

as:

N
P(0,5|4,)=b5(0)[] a5 5 b0, Eq. (6.7)
i=2

In most practical solutions, however, the state sequence followed is unknown to
us. Since there may be many state sequence paths that can produce this observation
sequence, the probability that O was produced by A, is the sum of all the

probabilities P (O, 3| A) for all state sequence paths, I . Computing the probabilities

for each of these paths would be computationally very expensive, requiring on the
order of 2-N-G"calculations (where G is the number of states per word).

Fortunately, an efficient algorithm using a technique called forward probabilities exist

87

which can calculate this sum of probabilities in the order of G*- N calculations, and
can report the state sequence of the most probable path. This is known as the
Forward-Backward algorithm [Rabiner 1989] since it can be similarly defined using

backward probabilities.

6.4.2. Training Problem

The most difficult problem of HMM’s is to determine a method to adjust the
models parameters (A, B) to maximize the probability of the observation sequence
given a set of models. There is no known way to analytically solve for the model
which maximizes the probability of the observation sequence. In fact, given any finite
observation sequence as training data, there is no optimal way of estimating the
models parameters. We can, however, choose the models parameters (A, B) such that

P(O|W) is locally maximized using an iterative procedure such as the Baum-Welch

method (or equivalently the EM (expectation-modification) method.

6.4.2.1. Baum-Welch Re-Estimation Procedure

It is an iterative procedure, using the Forward-Backward algorithm, used for re-
estimating the models parameters (A,B). The Baum-Welch re-estimation equations
[Rabiner 89] are used to produce a better estimate of the models parameters, from the
initialized models. A training observation sequence is used to iteratively improve A,
until the likelihood that the model A, produced the observation sequence reaches a
maximum at which point the model parameters have converged. It has been shown
that this convergence will be to at least a local maximum of optimization surface.
Because this surface is complex and has many local maxima, careful choice of the
initialization values of the parameters of the model is necessary to ensure that this

local maximum is in fact the global one.
6.4.2.2. Initialization Procedures

The Baum-Welch algorithm is based on creating a new set of parameters using
results obtained from the model with previously defined set of parameters. Therefore,
some initial set of parameters must be picked in order for the training method to be
possible. In theory, the re-estimation equations should give values of HMM

parameters that correspond to a local maximum of the likelihood function, but it does

88

not guarantee finding a global maximum. If the initialization is poor, a poor local
maximum may be obtained. For instance, if a probability is initialized to be zero, it
will remain zero with every iteration. Therefore, the choice of a good starting point
has an impact on how well the model will be.

Basically, there is no simple or straightforward method to choose initial
estimates of the HMM parameters so that the local maximum reached is the global
maximum of the likelihood function. Instead, Rabiner [Rabiner 89] states that: “an
experience has shown that either random (subject to stochastic and non-zero value
constraints) or a uniform initial estimate of the state probability distributions (A) is
adequate to give useful re-estimates of these parameters in almost all cases”. For the
observation probabilities, (B), experience has shown that good initial estimates are
helpful in the discrete symbol case. However, a uniform initialization is likely to be
sufficient; assuming a reasonable amount of training data exists. If the parameters are
allowed too many degrees of freedom with respect to the amount of training more
sophisticated forms of initialization are needed.

Such initial estimates can be obtained in a number of ways of ways, including
manual segmentation of the observation sequence into states with averaging of
observations within states, maximum likelihood segmentation of observations with
averaging (Viterbi segmentation), and segmental K-means segmentation with

clustering,, etc.

6.4.3. Decoding Problem

Decoding attempts to uncover the hidden part of the model by finding the most
likely state sequence associated with the examined observation sequence to obtain the
best sequence of ligatures that constitute a word. The discrete HMM-based graphemes
recognition problem is rendered to obtaining the path

ng(,:l)’_/; (,:1),5 L, (,zz),...,ng(,:N)’/; (lzN)whose sequence of nodes accumulates the

maximum sum of probabilities among all the possible paths over the search trellis
shown in Figure (6.5); where N >max" (L)is the length of the sequence of
observations and M is the number of graphemes. Any legitimate path can start at 1=/
only at the first state (marked by an inwards arrow) of any grapheme model, and can

end only at r=N at the last state (marked by an outwards arrow) of any grapheme

model.

&9

— oy ey 3
— i — —
1 1] 1] 1

ol =1l £ L=h]
[[1 =)
=5

aunraders Jo [2p0oul JATIA LT

F =5
auwradels Jo [apour NIAH

=
— o il =1
T R % L
Sg Sg SE_ Sg
==

aumradeis Jo [9p0ouI TAIINH

Of=N-1) O=N)

=) OfF) o3

t>

Figure (6.5): HMM search trellis for graphemes recognition.
90

As 1* order HMM ’s are deployed; every state other than the last one in each
HMM grapheme model S,

ix<. represented by hollow nodes are connected at the next

time instant only to either itself or its subsequent state in the same model by light

links whose incremental probabilistic weights are respectively
log(p(Si,kgL,. | Si,kng.)) and log(p(S[,kJrlsL, | Si,ksLl.) -

The conditional probability of a given observation O, to occur at a given state

Sixer, is log(p(O,[S,,.,)). The 1% order approximation of the likelihood

probability p(O|W) of the MAP criterion in Eq. (6.1) can then be expressed by the

following formula

i

10g<p (Z | Q)) ~ R = j_:]j%i)ﬂ (10g(p (S fg =S (=) | S fg(r:f—l),f:g(r:f—l))))—i— :(log(p (Of:r | S fg(r:f»/x(r:f))))
Eq. (6.8)

The last state of each HMM grapheme model S, ;, represented by filled nodes

are connected at the next instant either to itself, or to the first state in each HMM

grapheme model S, by dark links whose incremental probabilistic weights
log(p(g;|g,)) constitutes the grapheme-level bi-gram approximation of the

language model in the MAP criterion (see Eq. (6.1) above) p(WW) expressed as

follows..
* =N
log(p(l))z P, = Z log(p(gfg(t:j) |gfg(t:j—1))) Eq. (6.9)
J=Lf(G)=1
Given a sequence of observations, one can use the Viterbi [Rabiner 1989] algorithm

to search though the above trellis to obtain the two functions f,, f; describing the

optimal path whose states sequence correspond to the maximum P + P, all over the

legitimately possible paths in the whole trellis. This leads to the best sequence of

graphemes which constitute the recognized word.

91

CHAPTER 7

Statistical Language Models
and
Character Recognition

One of the added benefits of HMM’s is that they have contextual processing
built into them (P(W)) as illustrated in the previous chapter. This can be repeated at

many levels (e.g., characters, subword-level, word-level, sentence level) by linking
together individual models into some higher level model where the models at the
lower level become states for the higher level [Bahl 1983].

As our recognition system can work without any dictionary (open-
vocabulary). So, to improve recognition performance we use statistical language
models (backoff n-grams), which arc well known in speech recognition, on the
grapheme level. Statistical Language Modeling attempts to capture regularities of
natural languages in order to improve the performance of various natural language
applications, e.g. Information Retrieval, Machine Translation and Character
recognition.

This chapter is focused on the use of the Statistical Language Models (SLM’s)
in our specific problem, i.e. the decoding of the Arabic words. As shown by Eq. (6.9),
the SLM is supposed to give the a priori probability of a certain word being written.
Given the advantage of the statistics available on the likelihood of certain graphemes
following a given string of graphemes, impossible paths in the decoding trellis could
be pruned out and the less likely hypotheses could get less priority in their expansion.

This could increase the accuracy of the recognition.

92

7.1. Statistical Language Models

A SLM is a statistical model for estimating the probability P(V_V) for a given

sequence of graphemes
W=9,0,.9,, =9,
where Ly, is the number of graphemes in a word.

More likely sequences typically have higher probabilities. Finding such
adequate information would provide wide language coverage and dramatically
constrain the search space for higher language layers. The n-gram model is a well
known SLM for its relative simplicity and employed reduction of the problem

complexity.

7.2. N-Gram Language Models

The graphemes sequence W of length Ly has the probability of occurrence

P(W) that can be decomposed using the chain rule as follows [Schutze 2000]:

PW)=P(g,9......9,,) = P(9,")

= P(g)P(g.19)--P(g,,19™") Eq. (7.1)
=11P(g, 19"

where P(g; | gli"l) is the probability that the grapheme Q; will follow the graphemes

sequence g,'. This resultant conditional form of the previous transformation has a
remarkable advantage over the marginal one we started with. Natural languages are

called a wide horizon phenomena since g; is bonded to earlier and later entities over

the whole sequence L,,. Yet the expression elegantly dissects the marginal a priori
term into sequences mostly shorter than L, with causal conditional probabilities

dependent only on earlier entities [Attia 2005].

For a vocabulary of size M , there will be more than M' possible different
histories to specify P(g;|g,"') completely. Indeed, this kind of estimation is
infeasible even for moderate values of i. It is intuitive that, as text of natural language,
the present grapheme ¢, mostly has the strongest correlation with its closest past
neighbor g, , and weaker correlations with earlier ones. This is called the attenuating

correlation phenomenon, which is well described by Figure (7.1). We can then

93

approximately assume that P(g;|g;”') depends on some previous graphemes g}

[Attia 2005]. This approximation leads to an n-gram model with

n=h+1 Eq. (7.2)

where h is the effective history length of the sequence g'”} . Thus

Ly .
PW)=]]P(g; |95 Eq. (7.3)
i=1
Hence, for a unigram (n=1:no history) this approximation would yield for example

P(9,9,9:9.) = P(9,))P(9,)P(9,)P(9,)

and for bigrams (n=2:h=1)

P(9,9.9.9,) = P(g, [< sow >)P(g, | g,)P(g, | 9.)P(g, | 9,)P(< EOW >| g,)
where < SOW > and < EOW > denote a sequence of start and end of word.
Also for trigrams (n=3:h=2)
P(9,9.9.9,)=P(g, [k SOW>)P(g, [<sow>g,)P(g, | 9,9.)P(9, | 9.9,)P(<EOW>{0.9,)

Recall that the above approximation is valid only under the preliminary assumption

that the process is random.

R(g,.9,,)
A

L

>0,
9 0., 0 coeeeeene 9.

Figure (7.1): The attenuating correlation phenomenon, the correlation between gj and
other previous graphemes.
7.3. The Language Phenomenon from a Statistical Perspective

Let us count the occurrences (frequencies) of single graphemes C(W =g,)

(composing the vocabulary of graphemes of size M) in some large fair-text corpus of

94

size V, assuming that the assemblage sequence is as simple as a single grapheme, and
let us rank the graphemes by their frequencies in the corpus. We observe the
following:
1- Some part, say of size M', of the graphemes is only covered in the corpus, that
is
V:iC(\ﬂ:gr):iC(\ﬂ:gr), M’'<M Eq. (7.4)

where r is the rank of grapheme g,,C(:) is the number of times a certain

grapheme appears. We hence define the coverage of the corpus to be
|='\/%vI <1 Eq. (7.5)

2- The rank-frequency relationship roughly follows a hyperbolic curve as shown in
Figure (7.2) [Attia 2005]. This curve draws an essential understanding to the
language use. Zipf, in his principle of least effort, states that the best compromise
of both efforts of speaker and listener while communication results in a use of a
few very frequent entities and many low-frequency ones [Schutze 2000]. Also, as

a consequence, the coverage increases sluggishly as the corpus gets larger.

C(g,)

log(r)

M/

Figure (7.2): Ranking entities by their frequencies. Curve is coarsely considered as of
5 regions. (A) is the stop list, (B) is the frequent list, (C) is the rare list,
(D) 1s the singletons (read-only-once) list, and (E) is the unattested list.

Empirically from the corpus, we have

PW = 9,)=@ Eq. (7.6)

which yields zero for the unattested entities (uncovered part of the vocabulary) of size

M —M'. We know that this is incorrect since a better coverage would take place if

95

the corpus is appended some new text. Also for small C(W) values, P(W) would be

significantly inaccurate [Kapur 1972], [Schutze 2000]. A solution to this problem is
addressed by the so-called probability estimation smoothing techniques as that of
Good-Turing technique.

Ranking longer sequences (assemblages of two graphemes or more) turns out
to apply the same phenomenon with greater ratios of uncovered, singletons (read-
only-once), and low-frequency sequences, for the same corpus, which affects the
model efficiency. An adequately larger corpus is then needed for achieving the same
statistical representation as that of single graphemes. On the other hand, a very large

corpus may be an overfit and adds unnecessary computation and storage cost.

7.4. Maximum Likelihood Probability Estimation

The probabilities of the graphemes being written (given their histories) are
obtained by simply counting the relative frequencies of the grapheme sequences

appearing in a text corpus:

-y Clg,)
P(g./05) =2 Eq. (7.7)

Cg1)
where C(:) is the number of times a certain ligatures sequence appears. This
corresponds to a Maximum Likelihood (ML) estimation; the estimated probabilities

P(gl / g:) maximize the likelihood of the training text. However, this approach gives

rise to a serious problem: the model is fitted to the training set and the probability of
any n-gram not represented in the training corpus is estimated to be zero.

Also, the method implied by Eq. (7.7) is a good approximation if both counts
in the numerator and denominator in the RHS of this equation as well as both the
number of h-grams and the number of (h-1) grams in the corpus are large enough.
Otherwise this probability should be calculated using a smoothing technique as that
described in the following section. This means that the probability mass must be
redistributed across all possible n-grams in order to give a nonzero probability to all
sequences of n ligatures.

Smoothing allows the extension of an n-gram model trained on a certain text
to any other text, but it gives a non-zero probability to n-grams that are impossible

from a linguistic point of view. This is the main limit of the n- gram models.

96

7.5. “Bayes’, Good-Turing Discount, Back-Off” Probability Estimation

Any grapheme in the language vocabulary must have usage in some context,
though it seems endless to enlarge some corpus to cover all graphemes. The curve in
Figure (7.2) will always, in general, have the regions shown, only with different
widths. Presumably, a curve without the uncovered set is smoother than the one
shown. The process of biasing the uncovered set on the expense of discounting the
other regions is called smoothing [Attia 2005].

A Recognition system that doesn't employ smoothing would refuse the correct
solution if any of its input graphemes was unattested in the training corpus and
consequently may miss the optimal (most likely) solution. Among the smoothing
techniques available in the literature, we selected the so-called Bayes, Good-Turing,
Back-off method [Nadas 1985], [Katz 1987]. This technique has the advantage of
being based on the Zipf law and is then more robust with respect to a change of data.

In Good-Turing, Back-off method, all n-grams with a nonzero count (C(g'))

are discounted according to a discount ratio d . This discount ratio is predicted
Cl9p)

based on the Good-Turing estimate [Chen 1998]. The counts subtracted from the
nonzero counts are then distributed among the zero-count n-grams via the recursive
utilization of lower level conditional distributions, i.e., given the n-gram case, if the n-
tuple is not observed frequently enough in the training text then a probability based on
the occurrence count of a shorter-context (n-1)-tuple is used instead — using the
shorter context estimate is referred to as backing off.

Estimating the n-gram conditional probabilities using the Bayes, Good —Turing,

Back-off technique is implemented using the following equation:

C(g)) o
C(gl”") if C(g") >k,

P@lo;) = dmp'é:((;nll)) if k, <C(g)) <k, Eq. (7.8)
B (f((ggfl)) if C(g") <k,

where f(-)is the back off weight. For large counts > k;, C(g) are taken to be

reliable, so they are not discounted. Typical values of k; and k, are suggested to be

equal 5 and 1 respectively [Katz 1987], [Chen 1998].

97

7.6. Arabic Ligature Bigram SLM

In our system, the bigram approximation of the ligatures SLM given by Eq.
(7.9) is selected to match the 1% order L-R HMM topology chosen for our system.

P, l9) =P, .. Eq. (7.9)

where my & m; are the number of characters in the ligatures g;and g; respectively.

Arabic ligatures may be a compound of one, two, or three characters. By

rewriting and expanding Eq. (7.9) using the chain rule for my, m; € {1, 2, 3}, the

possibilities of character bigrams, trigrams, ..., 6-grams arise as follows in Eq. set
(7.10) below where the shorthand m-grams notation P(c!,)=P(c,,,C, . ,...,C,) i
used.
log(P(g,19)))= (my, my)=
log(P(c [c,.)) (L.1)
log(P(c,[c!")) (1,2)
log(P(c,[c!)) (1.3)
log(P(c! [c, ,))=log(P(“\c”))+1og(P(cj\c;:;)) (2.1)
log(P(c! [e!*))=log(P(c, [c!))+ log(P(c,[c1)) (22)
log(P(c! [c2))=log(P(c, \c M)+ log(P(c e) (2.3)
tog(P(cLfe,)=toglP(c,.fe,)+ log(p(e, Jor)) + oglPee o) B
log(P(c! [c12))=log(P(c, Jc!))+ log(P(c, [c/)) + og(P(c e)) (3:2)
log(P(c! [c1))=log(P(c, ')+ log(P(c, [c: 1))+ log(Pc cr)) (B3

Eq. set(7.10)

The probabilities in Eq. set (7.10) are estimated in our work using
Bayes's Good-Turing Back-off methodology [Katz 1987], [Attia 2002]. The Arabic
text corpus of the written language resource of the NEMLAR project [Yaseen 2006] is
used for building the SLM’s for our Arabic OCR.

98

7.7. NEMLAR Arabic Written Corpus

The NEMLAR (Network for Euro-Mediterranean LAnguage Resource and
human language technology development and support) is a project supported by the
EC with partners from Europe and the Middle East; whose objective is to build a
network of specialized partners to promote and support the development of Arabic
language resources in the Mediterranean region. The raw textual data of the corpus
supported by the NEMLAR project was obtained from Media International the
operator of the famous web portal www.lslamOnLine.net (75%), RDI internal
documents (20%), Annahar Lebanese news paper (3%), and other free sources (2%).

The NEMLAR Arabic written corpus consists of 500K words of standard
Arabic text compiled from 13 different domains. The Sampling parameters that were
taken into considerations in designing the written corpus are [Yaseen 2006]:

* Time span, (mostly recent; i.e. late 1990°s till 2005)

* Only Standard Arabic is considered as it is the most commonly accepted variant
throughout the native Arabic speakers, and also due to its regularity that can be
consistently modeled by the available tools.

» Miscellaneous domains (political, scientific ...) are represented according to their
importance weights in potential applications.

The following table represents the size of each of the categories in the selected

corpora [Yaseen 2006]:

Domain Size % of the total corpus size
General news 100,000 20
Dictionary entries explanation 52000 10.4
Political news 51000 10.2
Scientific press 50000 10
Sports press 50000 10
Interviews 49000 9.8
Political debate 35000 7.0
Arabic literature 31000 6.2
Islamic topics 29000 5.8
IT Business & management 20000 4
Legal domain text 20000 4
Text taken from Broadcast News 8500 1.7
Phrases of common words 5500 1.1
Total size: 500000 words 100

Table 7.1: NEMLAR Arabic Written Corpus categories

99

A comparison between the estimated probabilities of samples of correct words
and that of corrupted words (corrupted with errors similar to that occurred by an OCR
system) using our built language models is illustrated in Table (7.2). It is easily
inferred how the language models, in most cases, can best vote to the correct word
hypothesis with higher probability than that of corrupted words. This indicates that
our built LM will play a role in enhancing the recognition rate and this will be shown

during the evaluation of our built OCR system in the next chapter.

Correct word In prob.(correct) | Corruptedword | In prob.(corrupt)
BPEN -14.233576 BEN -15.770180
5 i - 14.487489 o_d -16.31970
G S -16.706138 G s -20.294384
Led - 13.440338 le 8 - 16.242788

Glalial) -21.930974 Glabil) -22.276129
NP -19.294052 a2 -33.394045
dss - 12.816936 ds - 13.017899
Osi8 - 17.186761 Ol -19.204175
Jseal - 14.845381 Jpeal -16.812153
SlaSladl) - 23.902800 AlaSladll -24.922025
4l 5all -20.392440 4l) - 27.426248
¢ Sl - 28.687162 ¢ alll -30.441199
s - 11.734678 e -12.656464
g -10.178127 @R - 14.439598
Ay - 18.279730 Ay - 18.460438
Jaaal -20.576915 Jaadl) -30.538537
< skl -27.720399 « yishill -29.692344
Lyl) - 25426517 L) -31.793467
o -6.789810 o) -19.098538
R -18.292399 uar -17.727819
and - 16.230750 pand -18.643430
olsay) - 28.744286 sy -34.359380
(sl 5 (sl -26.394882
4 5al) - 23.668309 4 gl -27.600805
daalall -19.803172 Aalall -27.187210
s -10.621117 il -11.813260
Blats - 19.707528 Glay -19.122858
132 - 14.154572 lag -15.816423
o5l -19.373087 Gl -21.251639
ol - 17.222264 ol -19.131701

100

Table (7.2): Correct words versus Corrupted words probabilities computed by the LM

CHAPTER 8

Arabic OCR System;
Implementation and Evaluation

This chapter presents our implemented omni font-written HMM-based OCR
system. The characteristics of the used database of Arabic fonts along side a sample of
these fonts are also demonstrated. Extensive assimilation and generalization testing
experiments have been carried out over the Arabic script to evaluate the system
performance. Along with the detailed description of those experiments, this chapter
also presents the obtained results manifesting the system superiority over the other
ones tried so far with HMM-based OCR systems. Finally an extensive error analysis

of the results is also presented.

8.1. HMM-Based OCR System Architecture

Based on the aforementioned OCR-to-ASR analogy discussed over chapter 6,
the simplified HMM-based solution architecture of the ASR problem shown in Figure
(8.1) can be borrowed to produce an effective solution for the Arabic font-written
OCR problem whose architecture is schematized by Figure (8.2).

It is worthy mentioning here that vector quantization is not always a part of
ASR systems, as most of them are continuous HMM-based ones like some HMM-
based OCR systems. However, our OCR presented herein is based on discrete HMM
due to the continuous/discrete hybrid nature of the components of its features vector

whose design is detailed in chapter 4.

101

"WRISeIP YO0[q WAISAS YSV PISeq-ININH 2321081 (1°8) 9In3Ig

xal

Surpuodsanoy)

A 4

J IV ueedy
Surrer]

¥

sIa)omeRIRd UONRZIBULION A310U7 :dNT @

+._#w
JOTRWNSH 12}I2AT07) |
‘qoIid awauoyg I
suress-y 0} t
awauoyq IRJ0RFEYD) Y
I L 11
I _ SIOR2p
1 . samyea o e e e e e e e M Lo
1 I Surmrery 1
1 0] 1
I I I !
: ! E I I
! v ¥V v ¥
| Jaurely, A== === IDNEIN JOJRWHSH
—- ININH }OOgIPo) dANT
I rL I L
.. B e, ——

STRIZ-JY

[*POIN

— o = s =

SAWALOYJ NINH dNH [eusts yoaadg
paziudooay W0y 2121051 peD s
10§33 5 .
I2po33(] amyeag I2ZHUEnd) mmn.womw, M_W/m I0J0BIINH
TNINH 2123951 paznueny) I0pPAp ampea g (DDA sempeag Iy
mw.ﬂ nHﬁ .Hﬁ

102

“WeISLIP YO0[q WAISAS YD PISLq-ININH 2121081 :(7°8) 91n31yq

SpJO Ay
PaZIusuIay

IIIDAIO])

JI21IRIB D

N 0

a1mesry

saImes|
paziudoady

3

—

aFed Jaded
KT, §ased
Surpuodsario) Sururely, + 'V
; sumued
_ " SRPUIRR J UCTIRZI[EULION] 9 SUey] STWRUACT :JN e W b.ﬁ E:Om
1 !
¥ il S 4
Jojewn sy Wy Ty
-q011 JDLIDAUG)) .
SUEIS-LU 2IMPSTT O ! aSew
aImesry TOREIED by pauueag
Tr | 1) r
..H. “ .H- “ SIO0J02 N m.<
1] SR | o e e e e e, ——————— DpuRy
“ __ Sumurel], .“. “ ‘W 3810 L@EEC&
_ ! . ! ! I
1 1 . d 1 J
_ “ T} “ “
! ! i v H H dNd
v | wuemsy L ___ YR JORILNSH PIUESLD)
1 q “ {00qapo)d dNEA v
1 1 ¥ 1. I |4 L I
1 | 1 L Josoduioda g
1 @ ﬁ nz
1 PIOAA
! sy
umIiE-w TATALT e m = y00q DING
aIesry 91RI0SI(] apoD oS
g > ‘m' INg
10799,
BP0 - uw _ZIENY) SI019A Jopenxg |
2y WINH 910181 J0109 A S1mes g armea by
W o W

103

Our proposed HMM-based Arabic OCR system [Rashwan 2008] illustrated in
Figure (8.2) is composed of two phases: the initialization & training phase whose
paths are drawn in dotted lines, and the recognition phase whose paths are drawn in
solid lines.

The modules of this system are implemented using a variety of tools;
MATLAB, HTK toolkit [Young 2006], as well as programming in C++. These

modules are discussed further in the following subsections.

8.1.1. Digital Scanning

The scanning resolution used is preferred to be 600 dpi as the laser printing
quality nowadays is at least 600 dpi. Also, this resolution is demanded for the slim
characters of small sizes of compact fonts to have enough features to cope with the
number of states of the HMM used.

Scanning at a higher resolution may be desirable but not practical as it would
need too high storage space (one A4 page scanned at B&W 1200 dpi would need
more than 16M Bytes) and would moreover need more processing time during feature
extraction and recognition phases. As demanded by our feature extractor (see chapter
4), input text images to our system should be bi-level (i.e. Black & White) ones which

is performed via thresholding by the scanner hardware to save storage and time.

8.1.2. Primary Noise Handler

The target text rectangle bitmap is passed through a median filter in order to
clean the salt & pepper noise typically occurring in noisy images. In our study, a 5x5
median filter has proved effective for cleaning input scanned text images [Attia 2007].

Median filters are, however, hard deciding and cause considerable erosive
distortion to the graphemes of written text which is generally harmful to the
recognition performance. So, they should be used only while the lines & words
decomposition, whereas other softer deciding filters — like Gaussian ones — might be

used - if necessary - while the recognition process.

8.1.3. Words & Lines Decomposer

Font-written OCR systems need to perform a vital processing on the input
scanned text rectangle prior to the recognition phase for decomposing the text

rectangle into lines hence into words as illustrated in Figures (8.3) and (8.4).

104

Our enhanced histogram-based algorithm presented in chapter 3 is used in this
kind of decomposition as it performs robustly on documents containing the
idiosyncrasies of real-life documents especially as per noise and structural textual

complexities.

Ui g 7 gasaall o pall paill anai Jgn 4l 0 5 0 gesadll [yad| [l faaes] (Jgal il 3
G el ghau Y G kS g) ghaut |

B gua de ool o guall e N1 G paill ki Zanal 5 o fie yobal] [gt} (1] [LI9] (G el i fana]

ikl Cns Arabic OCR Systems lgie y jall laguad =55 [Sad Arabic DCR] Systems [¢ad o ol fa geai §

lealaal y 10D Ll 35 oo Db 5,252 (30 Bpadl) Leataal 5 R (o] b [Dlaad 5,2 32 [1d Bundl o
Lpje s Laaly Gl agay Ol 5 5auaia) R] Bna Y CLI D g [i

Figure (8.3): Sample text rectangle Figure (8.4): Sample text rectangle bitmap
bitmap. after lines & words decomposition.

8.1.4. Features Extraction Module

Features extraction is one of the most important factors in achieving high
recognition performance in pattern recognition systems. Our features-extractor
computes a features vector as discussed in chapter 5 for each frame while sliding
through each Arabic word from right to left to produce a series of feature vectors that
are injected to the vector quantizer. The maximum number of vertical dark segments

per frame (NV,) is set to 4. Hence, the dimensionality of our features vector is 16.

8.1.5. Vector Clustering and Quantization Modules

Taking input feature vectors, the vector-quantizer serially provides quantized
observations to the discrete HMM decoder upon the recognition phase using a
codebook generated by the codebook maker during the training phase.

Using numerous sample text images of the training set of documents evenly
representing the various Arabic fonts and sizes of interest, the codebook maker creates
a codebook using the conventional LBG vector clustering algorithm chosen for its
simplicity and relative insensitivity to the randomly chosen initial centroids compared
with the basic K-means algorithm. The codebook size is a key factor that affects the

recognition accuracy and is specified empirically to minimize the WER of the system.

105

8.1.6. Dynamic Range Normalization Parameters (DNRP) Estimator

This module is used to detect the effective dynamic range of all the feature
vectors’ components, to calculate the normalization parameters for each component
using the population of the feature vectors in the training data after pruning the
extreme values. Normalization of the feature vectors injected to the vector quantizer
balances the weights of the different dimensions of the features vector while
calculating the distances between points in the features space during the recognition
phase.

As the 1** component population of the sub-feature vectors tends to follow a
natural (Gaussian) distribution, so our estimation of the effective dynamic range is
chosen to be within 4 + 3¢ of the distribution. Estimation of the effective dynamic
range of the 2" component is chosen to be within 3¢ of the distribution. The dynamic

range of the 3™ and the 4™ component is within -4 and 3 as illustrated before.

8.1.7. Characters-to-Ligature Converter

This module takes the text files corresponding to the training data to produce
the sequences of grapheme tokens of all the ligatures included in each word using the

predefined ligatures-set of each used font.

End-of-Word b _3 | Start-of-Word -
- End-of-Word (3 e —t— —J | Start-of-Word

T d}’"" Ldy .

Figure (8.5): Characters-to-Ligatures conversion example

This module is built using a deterministic finite state machine. An example of
character-to-ligature conversion is shown in Figure (8.5). The sequence of ligature
tokens along with the corresponding sequence of quantized feature vectors (i.e.

observations) of each word are then forwarded to the discrete HMM trainer.

8.1.8. Discrete HMM Trainer

Our discrete HMM trainer receives the observations sequence, which is the
sequence of quantized feature vectors, of each word along with its sequence of
ligature tokens generated by the character-to ligature converter. Training the HMM’s

are done over two steps: initialization and re-estimation embedded training.

106

8.1.8.1. HMM Initialization

Initialization of HMM’s is done using isolated ligatures bitmaps where HMM
parameters are initialized through two steps; the first one uses Viterbi training as a
hard deciding algorithm , while the second uses Baum-Welch re-estimation as a soft

deciding algorithm.

I. Viterbi training step.

The basic principle of Viterbi training depends on the concept of HMM as a
generator of ligature vectors. Every training example can be viewed as the output of
the HMM whose parameters are to be estimated. Thus, if the state that generated each
vector in the training data was known, then the unknown observation symbol
probability could be estimated by averaging all the vectors associated with each state.
Similarly, the transition matrix could be estimated by simply counting the number of
time slots that each state was occupied. The above idea can be implemented by an

iterative scheme as shown in Figure (8.6).

' ™ -
|\ Prototype HMM J | Tnitial HMM W
A

| —

.] Y
Uniform Segmentation

Forward/Backward
Y Algorithm

Initialise Parameters

L

L

Update HMM Parameters

Witerbi Segmentation

L 3
= T

Update HMM Parameters = iy No

< Converged? >

J\ ., _____.-—-"

- No \l Tes

T - —
<~ Converged!

e p
I‘f“ | Estimated HMM]
- .

| Initialised FIMM

L o

Figure (8.7): Baum-Welch training

Figure (8.6): Viterbi training flowchart flowchart

II. Baum-Welch Re-estimation step

Its operation is very similar to the viterbi training except that, as shown in

Figure (8.7), it expects the input HMM models to have been initialized and it uses

107

Baum-Welch re-estimation in place of Viterbi training. This involves finding the
probability of being in each state at each time frame using the Forward-Backward
algorithm. This probability is then used to form weighted averages for the HMM
parameters. Thus, whereas Viterbi training makes a hard decision as to which state

each training vector was “generated” by, Baum-Welch takes a soft decision.

8.1.8.2. HMM Re-Estimation Embedded Training (HERest)

Re-estimation embedded training which is the main HMM training step, uses
the Baum-Welch re-estimation procedure to train the ligature models using the
associated ligature tokens generated by the character-to-ligature converter to

iteratively maximize the likelihood probabilities distributions P(O | 1).

In outline, HERest works as follows. On startup, HERest loads in a complete
set of HMM definitions. Every training file must have an associated label file which
gives a transcription for that file. HERest processes each training file in turn. After
loading it into memory, it uses the associated transcription to construct a composite
HMM which spans the whole word. This composite HMM is made by concatenating
instances of the ligature HMM’s corresponding to each label in the transcription. The
Forward-Backward algorithm is then applied and the sums needed to form the
weighted averages accumulated in the normal way. When all of the training files have
been processed, the new parameter estimates are formed from the weighted sums and

the updated HMM set is output.

8.1.9. Discrete HMM Recognizer

The HMM recognizer stage receives a sequence of quantized feature vectors
(observations) representing the scanned word and uses the Viterbi algorithm as
explained in chapter 6 to produce the most probable sequence of ligature models that
produces these observations. Using a statistical ligature bi-grams Probabilities
generated by Ligature n-grams probability estimator, the most probable model with
the highest score is produced by the Viterbi algorithm.

Our Arabic font-written OCR relies on HMM’s with 1* order left-to-right
topology. As one of the key factors that affect the system performance, the number of

states per model is empirically fine tuned to optimize that performance.

108

8.1.10. Ligature n-Grams Probability Estimator

For recognition tasks; the SLM gives the a priori probability of a given
hypothesis of ligature sequences. In our system, the bigram approximation of the
ligatures SLM, is selected to match the 1% order Left-to-Right HMM topology chosen
for our system.

The language models probabilities are estimated using Bayes's Good-
Turing_Back-off methodology. The Arabic text corpus of the written language
resource of the NEMLAR project is used for building the SLM for our Arabic OCR.

8.1.11. Ligature —to- Character Converter

This module converts the sequence of recognized ligatures back into their

equivalent plain-text character codes (Unicode).

8.2. Arabic Font-Written Database

The Database prepared to assess the performance of the presented HMM-
based font-written OCR, has the following characteristics:

e [t is chosen arbitrarily from real-life documents which are full of punctuations and
special symbols embedded within the text.

e The database has been digitally acquired via a common but standard hardware of
HP3800 flatbed scanner with TMA, and HP Laser jet printer.

e All the database pages are scanned at 600 B&W dpi, and losslessly stored as
bitmaps.

e [t includes 12 visually distinct and widely used Arabic fonts under both the MS-
Windows and Macintosh OS. environments. The chosen fonts have different
visual features as detailed by Table (8.1).

e For each font, 6 different sizes within the typical document-editing range (10 to
22) are represented by 30 pages per size is included.

e For each size of each font, an extra page of isolated ligatures used for the HMM
initialization procedure is included.

¢ A line boundaries aligned text file (called the text label file) corresponding to each
of the training pages bitmaps is also supplied for the HMM re-estimation

embedded training procedure.

109

Font Name

& Type Visual features Used for
Simplified [Limited no. of ligatures (151), gross graphemes, thin | Training and
Arabic contour, tends to be sharp cornered, clear openings, | Assimilation
(MS font) separate dots, no touching tails, .. testing
Mudir Limited no. of ligatures (151), gross graphemes, thick | Training and
contour, round cornered, clear openings, partially Assimilation
(MS font) . . .
connected dots, no touching tails, .. testing
Koufi Limited no. of ligatures (151), gross graphemes, very | Training and
(MS font) thick contours, very sharp cornered, small openings, | Assimilation
separate dots, no touching tails, .. testing
Traditional | Broadest ligatures set (220), minute graphemes, thin | Training and
Arabic contours, round cornered, almost close openings, Assimilation
(MS font) partially connected dots, no touching tails, .. testing
Limited no. of ligatures (151), minute graphemes, .
. Training and
Akhbar MT | med. contour thickness, tends to be sharp cornered, o
. . Assimilation
(MS font) almost close openings, connected dots, no touching)
. testing
tails, ..
Limited no. of ligat 151 h thi ..
imited no. of ligatures (151) gross gr‘ap emes, thin Training and
Tahoma contours, round cornered, clear openings, separate o
. . Assimilation
(MS font) dots ,touching tails, ...,)
testing

Some ligatures has odd shapes (e.g. middle Haa)

Courier new

Very broad ligatures set (209), minute graphemes (but

Training and

very wide), thin contours, sharp cornered, clear Assimilation
(MS font)) . . .
openings, connected dots, no touching tails, .. testing
Bachdad Rich ligatures set (167), minute graphemes, thick | Training and
g contours, round cornered, almost close openings, Assimilation
(Mac font) . . .
connected dots, touching tails, .. testing
D h Limited no. of ligatures (154), minute graphemes, | Training and
emas . .
(Mac fon(:) med. contour thickness, tends to be sharp cornered, | Assimilation
almost close openings, connected dots, touching tails,.. testing
Limited no. of ligatures (154), minute graphemes,
Nadeem med. contour thickness, tends to be sharp cornered, |Generalization
(Mac font) almost close openings, partially connected dots, testing
touching tails, ..
Rich ligatures set (167), minute graphemes, thin ..
Naskh £ (167) £ .p Generalization|
contours, round cornered, close openings, connected)
(Mac font)) . testing
dots, no touching tails, ..
Limited no. of ligatures (154), minute graphemes, thin L.
Gizza & (154) . srap . Generalization|
contours, sharp cornered, semi clear openings, .
(Mac font) testing

partially connected dots, no touching tails, ..

Table (8.1): Visual features description of the fonts used in training and testing

110

The ligature set used in our experiments is composed of 220 ligatures. It covers all
the significant regular Arabic fonts and it is shown in Figure (8.4). It is composed
of 117 simple ligatures (number of characters per ligature is one), 78 complex
ligatures (no. of characters per ligature is more than one) and 25 non alphabetic
ligatures (numerals, punctuations and special symbols). The table of the ligatures
set defined in each font is also provided as a text files to be used by the character
to ligature Converter.

Diacritics like Fateha, Kasra, Dhamma, and Tanweens is not included in the

database.

(€
c—__h__v-cr_t "9.......
.L;_é-c__s-._.._:-c._e-c___«-h_._a-c_ﬁ
—h G e e e o o A

. . ._.;ﬂ ‘Ja — ‘f _2""' +

S S S R YU Y/ W V[VR W) O S G ¢
T T I I S W Uy Y I PSP B O Y i
;u.__ﬁi_”l_{‘-u__._.._;g_:_f- — %

— e —— =P e — 33 A L

Ls.——d,d).h—‘.p—-—?:-_ﬂ.—érggr_.__

1% =y e t— A AY T Y oYY

Figure (8.8): Arabic Ligatures set used in the OCR system.

111

8.3. Evaluation Experiments Setup
8.3.1 Training phase Setup

The training data used to experimentally evaluate the implemented OCR
system covers 9 visually distinct and widely used Arabic fonts under both the MS-
Windows and Mac. OS environments shown in Figures (8.9) and (8.10).

a.
Lalush G 005 3215 Jaal) e L3S Ledoa o A e 5 _alls A1
clale die alaia¥l (he a8l 1ags Jans &l Ledl W) cAall elale 5 5ol

deale sshan Al 45 seall Jiluall 5 5 e a2 Ll e Glldg ol guaY!

b.
Llogl oy 5919 AY1g Joasd! po oS W@ 415 Aiguo 6yl AL
slode wis ploca¥ ! w0 ol 1dg Lase @ @1 Y1 Al slodeg ywr g

dasle (Solald W1 Adgall luadl 835 o & JI e clUdg (lgo¥l

haLai gl Joas 55119 33819 Jaall Jo 258G Lalga yls datigua d,plla dldldll
clole sic olois¥l Jo 5adll laay bins of Lawii 81 Galll clole 5 rassaaill
Mode golais @il dasiguall JiLuoll 4554 o o 511 gle £l il gull

.lot.ﬂ}td;_\;g D)J'l_, .-L:LCY'I_, J-L:L-“_}.Oﬂ.i‘slu_,:- I3 A5 40 SJ»LL—.‘ alalal

elade e ‘-'L.o.:.bY'l e J..LEJ'l [BVS L |l L&f \Jl ¢axl)) ;L.:..LC-J Qy_-—\.u_;;v_-;".!'l

gele (5 skt) A pmall PLLLI 3587 o (2) e U5y ol 0V
blusi Gur o1y 35Vly Jandl e 43S Ledgm lo LiSgw 5,als WAl
slale aie olaial Go Hudll 1agy baas o LT V) AN claley Crupay gl
cLgale (s5bi5 I Asgall PLudl 5,85 0o p2 1 e Uy clgo
blwsl ¢ 3,)lg 33Vlg Jasdl o ,usS Lpde> 1 asigo 8,0l alalsll
clole aic ploadVl o ,aall ligs baxi o) sl V] a2l sloley oayug=ill
Lode Sl sl asgall Jlawll 6,55 oo pe,ll (sle ddg «wlgoV

blugl go oudly Y1 Ju31 go 84S Lde> 1o Lbgo byalhb Uil
slade wie plaa¥! go yuidl Tdp B4 1 Lol Y1 () slades guansaidl
clpde gehis gl Agall Jolall 84S g pi gl e b Ol oY

Figure (8.9): Samples of MS-Windows fonts used in training, a) Simplified Arabic,
b) Mudir, c¢) Koufi, d) Traditional Arabic,) Akhbar, f) Tahoma, g) courier-new.

112

Llasl o 300y N1y Jad | oo 38 L 13 3 g 5,0 il
clake e aleza¥l oo LAl g Lo I LT Y] A« ke s oy sl
e oty) i pead) B 5,28 o o2)1 e iy ol s

Loy e il 3351y Jusdl Gn LIS Lelom Ll Liisac 5,0l 2213
clale sic aLaia¥l cya ,uall 13gs a3 ad (3T W) Aall) olale s Cpatssausll
Laale golis 30 Lisuall il 33K o pill e ellls col sl
Figure (8.10): Samples of Mac. fonts used in training, a) Baghdad, b) Demashq

For each training font, 6 different sizes within the typical document-editing
range (10 to 22) are represented by 25 pages per size. Each page contains about 200
words selected spontaneously from Arabic websites. Assuming an average of 4
ligatures per Arabic word [Attia 2004], the size of the training data ~ 9x6x25x200x4
= 1,080,000 graphemes.

8.3.2. Testing phase Setup

The Omni quality of an OCR system is measured by its capabilities at
assimilation and generalization tests. The former test measures the performance of the
system at recognizing pages (whose text contents are not included in the training data)
printed in fonts represented in the training data. While the later test measures the
performance of the system at recognizing pages printed in fonts not represented in the
training data. The testing data is composed of two parts; assimilation testing data, and
generalization testing data:

Assimilation testing data represents all the fonts and sizes used in training
using 5 pages (other than the training 25 pages) per each size per font. The size of the
assimilation testing data =~ 9x6x5x200%4 = 216,000 graphemes.

Generalization testing data covers 3 Mac. OS fonts shown in Figure (8.11)
other than the 9 fonts used for training. For each of these 3 fonts, 6 different sizes
within the typical document-editing range are represented by 5 pages per size. The

size of the generalization testing data =~ 3x6x5%200x4 = 72,000 graphemes.

113

Laleasi cn aolls 3aY 1 Juall fpo 58S Ledsn Lls Liisen 5ol 2alsl)
clade sie ala3a¥l Cyo Ludll I3 a3 ol (3]) Aall) e Lales s gantl!

b.
Ll of o o My dss N1y Judt e 87 Lgd g 1> E5 yae 5l alala))
slode wie plaza¥l e ddl) gy Jad o Ll V) (Al slade y Cuy gl
Lgake (5 a5 A1 35yl JHLL 3287 o 2 0 e 83 el oY)

C.

Lliasl ons aylls 32Y 1y Juall e 538 Ledsa 1o Lt gem 580U LLaLSI|
cLale wie pLaia¥! oo uill 1igs fiad of 3T Y1 G cLale s paas sl

Figure (8.11): Samples of fonts used in the generalization tests, a) Nadeem, b) Naskh,
c) Gizza.

WER is the error rate perceived by the users of the OCR, and is hence the
useful error rate used in the evaluation process. On the other hand, CER is the
character (or more accurately; the grapheme) error rate which is the one typically
reported in the scientific literature as well as the commercials. The relation between
the WER and CER, assuming statistically independent multiple errors within the same

word and error probability for all ligatures are equal, can be derived as:
a =(a)"
w c
1-WER = (1- CER)"

1—WER=1—£~CER+%CER2— Eq. (8.1)

1-WER~1-(-CER iff CER <<1
WER ~ (- CER
Where a,, and a. are the word and character recognition accuracy respectively.
¢ is the average number of ligatures per word which is = 4 for Arabic.
The WER is measured following the speech recognition conventions; i.e. the
number of substitutions, deletion, and insertions are summed up and divided by the

total number of words in the input textual transcription files.

114

8.3.3. System Parameters Setup

There is no mathematical method to calculate optimal number of states per
model. Alternatively, various values were examined to select the best number of states
per model. The first set of experiments done to discover the optimal number of states
per model was performed on a single font. Traditional Arabic was selected because it
is the most compact and ligatures rich font. Those parameters were then generalized
to other fonts in the corpus.

These initial experiments shows that the best no of states regarding the least
WER in case of a uni-font system is 14 states for all the ligatures, except for few
extremely wide ones where 18 states are used, and other few extremely slim ones
where 7 states only are used .

Another two set of experiments are then done, using the assimilation data, to
select the two main omni-system parameters; number of states and the codebook size.

The first set of experiments studied the codebook size parameter. Four
different codebook size values were examined using the best number of states
detected from the first set of experiments. Figure (8.12) shows the improvement in the
system performance as the codebook size increases. It shows that the least WER4, is
achieved at codebook size =2048 and this was we previously predict using our visual

aid discussed in chapter 5.

12
"
10

WER, (%),

256 512 1024 2048
Codebook Size
Figure (8.12): System performance using different codebook size

115

The second set of experiments studied the performance of the system, with
codebook size=2048 and using 7 states for slim graphemes, by varying the number of
HMM’s states for the rest of graphemes. Figure (8.13) shows the improvement in the
system performance as the number of states increases. It shows that the WER
decreases rapidly until the number of states reaches 14. After that a slight increase is
achieved. The improving in the system performance achieved when the number of
states =16 is nearly the same when using hybrid number of states for the graphemes as

that of the uni-font experiment (18 states for some ligatures)

6.5

B

84

5

4.4

WER, (%).

4

3.4

10 11 12 13 14 15 16
Murmber of states

Figure (8.13): Number of states per model versus system performance

8.3.4. System Evaluation

HMM type Discrete , 1* order, L-to-R
Codebook size 2048
7 states for very slim graphemes.
HMM states per model 18 states for very wide graphemes.

14 states for normal graphemes.

Initialization: Viterbi, and Baum Welsh.
HMM algorithms Embedded training: Baum Welsh.
Recognition: Viterbi.

Training data size 1,080,000 graphemes
Assimilation testing data size 216,000 graphemes
Generalization testing data size 72,000 graphemes
Language Models Bigram SLM

Table (8.2): HMM parameters setting

116

From the previous sets of experiments, the best parameters setting for our
HMM-based OCR during both the training and recognition phases are summed up in
Table (8.2).

Under the mentioned settings, assimilation and generalization testing have
been conducted to obtain the overall recognition error rates. To study the effect of the
statistical language models, both experiments are run twice; with the language model
enabled on the first the run, and with the language model neutralized on the second
run. The obtained error rates of the 4 cases are summed up in Table (8.3), where the
assimilation error rates are designated by the subscript 4, and the generalization error

rates are designated by the subscript G.

CER 0.77%
WER, 3.08%
SLM enabled
CERg 2.58%
WERg 10.32%
CER 1.53%
WER, 6.13%
SLM neutralized

CERg 3.65%
WERg 14.60%

Table (8.3): Experimental results.

It is valuable to mention that, upon our first trial to run a generalization test,
the recognition models are built from the 7 MS-Windows fonts and the testing data
was composed of 3 Macintosh Os. fonts. Under these conditions we got the poor
results of WERG~35%~11-WERA (WERG>>WER,)

After error analysis and some contemplation, we realized that Macintosh Os.
fonts are built with different concepts not covered by the 7 MS-Windows fonts; e.g.
connected dots, overlapping of the tails of some graphemes, ..., etc.

After adding 2 Macintosh Os. fonts to introduce those concepts in the training
data, we have achieved the dramatic enhancement of WERG=10.32%~3.4-WER4.
This indicates that our OCR system can statistically build font shape concepts.

117

8.4. Experimental Error Analysis

Error Analysis of both Assimilation and Generalization tests regarding font
shape and size are done to show the performance of the system over different sizes
and shapes of Arabic fonts. Tables (8.4) & (8.5) show that the system performance is

almost good over different font sizes and shapes.

Size 2LWER, %
Small Medium Large Over sizes
Shape per shape
Slmpllitled 0.07 0.05 0.10 0.21
Arabic
Mudir 0.05 0.05 0.03 0.13
Koufi 0.13 0.09 0.14 0.37
Tradltu.mal 0.19 011 0.15 0.45
Arabic
Akhbar MT 0.07 0.05 0.06 0.17
Tahoma 0.16 0.11 0.18 0.45
Courier new 0.24 0.32 0.47 1.03
Baghdad 0.13 0.05 0.02 0.20
Demashq 0.06 0.01 0.02 0.09
SWERL %
Over shapes 1.09 0.83 1.16 3.08
per size

Table (8.4): Error analysis of Assimilation test regarding font shape/size

Size >WER,4 %
Small Medium Large Over sizes
Shape per shape
Nadeem 0.97 0.07 0.18 1.22
Naskh 2.04 1.71 1.09 4.84
Gizza 2.53 0.93 0.80 4.26
> WERA%
Over shapes 5.54 2.71 2.07 10.32
per size

Table (8.5): Error analysis of Generalization test regarding font shape/size

Error analysis of the most frequent recognition mistakes in the Assimilation

test is done. The most frequent 17 mistakes that contribute to about 63.15% of WER,
are listed in Table (8.6).

118

Frequency %

Original ligature Replaced By Of the total WER
O < Q 23.02
Decomposition x 6.33
— i 5.03
N e 4.74
- o 3.96
— _— 3.02
s i 2.90
_ | 2.60
Insertion | 2.37
i _ 225
<4 <3 1532
T S 1.66
3 s 0.95
5 s 0.77
S I S 3 0.71
aecs — 0.41

Table (8.6): Assimilation test most frequent mistakes

Original ligature

Replaced By

Frequency %

Of the total WER

15.56

B

15.06

. |

3.81

3.10

3.06

2.00

2.00

1.56

1.44

1.25

1.12

Decomp .Errors

|12

1.06

0.94

0.81

0.81

7
—_—
e i
-
- s

0.50

0.40

—
| S
A

0.30

Table (8.7):

119

Generalization test most frequent mistakes

Also, the error analysis of Generalization test regarding the most frequent
recognition mistakes is done. The most frequent 19 mistakes that contribute to about
55.90% of WERg are listed in table (8.7), where x means different characters.

The frequency analysis of both the assimilation and generalization errors
shown in Table (8.6) and (8.7) shows that over 40% of the errors are due to only the
most 5 frequent ones, which maximizes the chances of removing them via simple
post-OCR text correction methods.

The error rates obtained after the generalization test with the statistical
language model enabled are the most indicative as these conditions are closest to the
real life ones. Given that both the scientific and commercial literature in this area
typically report about CER, < CER , the experimental results of Table (8.3) above
puts our HMM-based OCR with the new features vector in the lead among the other
open-vocabulary omni font-written OCR’s for cursive scripts, at least for Arabic. [Al-

Badr 1995], [Bazzi 1999], [Gouda 2004], [Khorshed 2007].

120

CHAPTER9

Conclusion and Future Work

Cursiveness represents the main challenge when recognizing Arabic words.
Previous research has proved the difficulties in segmenting the Arabic word into its
ligatures. The implemented algorithms throughout this dissertation for lines and words
decomposition, feature extraction and classification determine the operational
characteristics of the recognition system.

Throughout this dissertation, a more robust algorithm for lines/words
decomposition especially in Arabic, or Arabic dominated, text rectangles from real-
life multifont/multisize documents has been developed. This algorithm has proved
robust on realistic Arabic, or Arabic dominated, documents after the extensive
experimentation on real-life documents.

After reviewing the inferior status of font-written OCR systems for the
challenging cursively scripted languages compared with their Latin scripted peers, the
HMM-based methodology that proved to be most promising at approaching this
problem has been dissected in this dissertation to reveal its weakest point of lacking a
sound features vector design like those defined for HMM-based ASR systems.

A new feature vectors design for HMM-based omni font-written Arabic OCR
system based on autonomously normalized horizontal differentials has been
rigorously derived and introduced for cursively scripted languages in order to robustly
realize WER’s as low as those achieved by OCR systems for Latin scripted languages.
These features well represent the agglomerative and topological characteristics of the

ligatures.

121

The design and implementation of a real life omni-font, open-vocabulary,
HMM-based Arabic recognition system using both our robust algorithm for
lines/words decomposition and our new designed feature vectors is fully described in
this dissertation.

Based on the continuous/discrete hybrid nature of the components of our
designed feature vectors, Discrete HMM is used and hence vector quantization is
needed. The LBG well known clustering algorithm is used to build the codebook used
for VQ. A developed visualization aid for estimating the training data set size and the
codebook size required for the clustering algorithm to achieve optimum codebook
construction and hence least WER achieved by the recognition system.

The bi-gram ligature-level statistical language model deployed in the HMM
decoder of our recognizer is built via the combined methodology of Bayes’, Good-
Turing discount, and Back-off probability estimators. Incorporating the SLM in the
HMM decoder greatly enhance the performance of the recognition system.

Extensive assimilation and generalization testing experiments have been
carried out over the Arabic script which is an extreme case of cursive scripts to
evaluate our system. Along with the detailed description of those experiments, the
dissertation has finally presented the obtained results

The data set used for training and recognition purposes by the implemented
HMM-based recognition system has two main features: the unlimited lexicon size and the
data source diversification. The unlimited lexicon size is for the sake of training an open
vocabulary recognition system. The data source diversification is essential to test the
proposed features on a wide spectrum of Windows and Macintosh Os. fonts.

The experimental results puts our HMM-based OCR system with the proposed
features vector in the lead among the other open-vocabulary, omni font-written OCR

systems for cursive scripts; at least for Arabic.

Further work in the areas presented in our dissertation is more promising to
enhance the performance of our Arabic OCR systems. Future work could be presented

in five areas:

1. Using a clustering technique other than LBG to give more flexibility in
choosing the codebook size other than order of 2.

2. Applying and testing our system for recognizing noisy text images.

122

Testing the performance of our system using other types of HMM
topology.

Using Post-OCR Text Correction algorithm to reduce the WER of
Arabic OCRed text using character segment correction, language
modeling, and Shallow Morphology.

Using Fusion between independent Arabic OCR systems to get a total
WER of the fused OCR systems lower than the smallest WER in the set
of those independent Arabic OCR systems.

Training and evaluating our system not only on other major cursively
scripted languages especially Indian, Urdu, and Persian, but also on

Latin scripted ones to have multilingual system.

123

References

[1] Abdelazim, H. Y. “Arabic OCR based on Entropy Measures” Proc. Of ICAV3D,
International Conference on Augmented Virtual Environments and 3D Imaging,
Mykonos, Greece, June 2001 .

[2] Abuhaiba, I, Ahmed, P., “Restoraion of temporal information in off-line Arabic
handwriting”, Pattern Recognition, VVol. 26, No. 7, pp. 1009-1017, July 1993

[3] Abuhaiba, I., “A Discrete Arabic Script for Better Automatic Document
Understanding”, The Arabian Journal for Science and Engineering, Vol. 28, No.
1B, pp. 77-94, Apr 2003.

[4] Al-Badr, B., Mahmoud, S.A., “Survey and Bibliography of Arabic Optical Text
Recognition”, Elsevier Science, Signal Processing, Vol. 41, pp. 49-77, 1995.

[5] Al-Badr, B. and Haralick, R. “A Segmentation-Free Approach to Text
Recognition with Application to Arabic Text”, Int’l J. Document Analysis and
Recognition, Vol. 1, pp. 147-166, 1998.

[6] Altuwaijri M, Bayoumi M. “Arabic text recognition using neural networks”,
Proceedings of IEEE International symposium on Circuits and Systems,
London, UK, pp. 415-418, July 1993

[7] Altuwaijri M, Bayoumi M. “Thinning algorithm for Arabic characters using art2
neural network”, IEEE Trans Circuits and Systems, Vol. 45, No. 2, pp. 260-
264, 1998

[8] Al-Yousefi, H., and Upda, S., “Recognition of Arabic Characters”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 8, pp.
853-857, August 1992.

[9] Amin, A., and Mari, J.F., “Machine recognition and correction of printed Arabic
text”, IEEE Trans. Systems, Man, and Cybernetics, Vol. 9, pp. 1300-1306,
1989.

[10] Amin, A., “Off-Line Character Recognition; A Survey”, Proceedings Of the 4™
Int. Conf. Document Analysis and Recognition (ICDAR '97), Ulm, Germany,
pp. 596-599, August 1997.

124

[11] Amin, A., “Offline Arabic Character Recognition: The State of the Art”, Pattern
Recognition, Vol. 31, pp. 517-530, 1998.

[12] Amin, A., Fischer, S. “A Document Skew Detection Method Using the Hough
Transform”, Pattern Analysis .and applications, Springer-verlag, Vol. 3, No. 3,
pp 243-253, 2000.

[13] Amor, N., Amara, N. E., “Multifont Arabic character Recognition using Hough
Transform and HMM/ANN Classification”, Journal of Multimedia, Vol. 1, No.
2., May 2006

[14] Attia, M., Rashwan, M., Khallaaf, G., “On Stochastic Models, Statistical
Disambiguation, and Applications on Arabic NLP Problems”, The Proceedings
of the 3 Conference on Language Engineering; CLE’2002, the Egyptian
Society of Language Engineering (ESLE). This paper is freely downloadable at
http://www.RDI-eg.com/RDI/Technologies/paper.htm.

[15] Attia, M., “Arabic Orthography vs. Arabic OCR; Rich Heritage Challenging A
Much Needed Technology”, Multilingual Computing & Technology magazine,
USA, Dec. 2004.

[16] Attia, M., Theory and Implementation Of A Large-Scale Arabic Phonetic
Transcriptor, and Applications, PhD thesis, Dept. of Electronics and Electrical
Communications, Faculty of Engineering, Cairo University, 2005.

[17] Attia, M., EI-Mahallawy, M. “Histogram-Based Lines & Words Decomposition
for Arabic Omni Font-Written OCR Systems; Enhancements and Evaluation”,
Lecture Notes on Computer Science (LNCS): Computer Analysis of Images and
Patterns, Springer-Verlag Berlin Heidelberg, Vol. 4673, pp. 522-530, 2007.

[18] Bahl, L. R., Jelinek, F., and Mercer, R. L.,“A maximum likelihood approach to
continuous speech recognition”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-5, No.2, pp. 179-190, 1983.

[19] Bazzi, I., Schwartz, R., Makhoul, J., “An Omnifont Open-Vocabulary OCR
System for English and Arabic”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 21, No. 6, June 1999.

[20] Blue, J. L.,Candela, G. T., Grother, P. J., Chellappa, R., and Wilson, C. L.,
“Evaluation of Pattern Classifiers for Fingerprint and OCR Applications”,
Pattern Recognition, Vol. 27, No. 4, pp. 485-501, 1994.

[21] Bozinovic, R. M., and Srihari, S. N., “Off-line cursive script word recognition”,
IEEE Transactions of Pattern Analysis and Machine Intelligence, Vol. 11, pp.
68-83, January 1989.

[22] Bunke, H., Roth, M., and Schukat-Talamazzini, E. G., “Off-line cursive

handwriting recognition using hidden Markov models”, Pattern Recognition,
Vol. 28, No. 9, pp. 1399-1413, 1995.

125

[23] Bunke. H., Wang, P. S. P., “Image Processing methods for document image
analysis”, Handbook of Character Recognition and Document Image Analysis
edited by H. Bunke and P. S. Wang, 1997.

[24] Cho, W.Y ., Lee, S.W., Kim, J.H., “Modeling and Recognition of Cursive Words
with Hidden Markov-Models”, Pattern Recognition, Vol. 28, No. 12, pp. 1941-
1953, December 1995.

[25] Callan, J., Kantor, P., Grossman, D., “Information Retrieval and OCR: From
Converting Content to Grasping Meaning”, SIGIR conference, 2003.

[26] Chen, M. Y., Kundu, A. and Zhou, J., “Off-Line Handwritten Word Recognition
Using a Hidden Markov Model Type Stochastic Network”, leee Transactions
On Pattern Analysis And Machine Intelligence, Vol. 16, No. 5, pp. 481-496,
May 1994

[27] Chen, S. F., Goodman, J.T, An Empirical Study of Smoothing Techniques for
Language Modeling. Technical Report TR-10-98, Computer Science Group,
Harvard University, 1998. http://www.cs.cmu.edu/~sfc/html/publications.html

[28] Cheung, A., Bennamoun, M., and Bergmann, N. W. “An Arabic optical
character recognition system using recognition-based segmentation”, Pattern
Recognition, Vol. 34, No. 2, pp. 215-233, 2001

[29] Cote, M., “Reading of cursive scripts using a reading model and perceptual
concepts, the PERCEPTO system”, Int. Journal of Document Analysis and
Recognition, Vol. 1, No. 1, pp. 3-17, 1998.

[30] Cowell, J., and Hussain F., “A fast recognition system for isolated Arabic
character recognition”, IEEE Information Visualization 12002 conference,
London, July 2002.

[40] Cowell J and Hussain, F., “Thinning Arabic Characters for Feature Extraction”,
Proceedings IEEE Conference on Image Visualisation 2001, London UK. July
2001.

[41] Davis, S.B., Mermelstein, P., “Comparison of Parametric Representations for
Monosyllabic Word Recognition in Continuously Spoken Sentences”, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. 28, pp. 357-
366, 1980.

[42] Dehghan, M., Faez, K., Ahmadi, M., Shridhar, M., “Handwritten Farsi (Arabic)
word recognition: a holistic approach using discrete HMM”, Pattern
Recognition, VVol. 34, No. 5, pp. 1057-1065, 2001.

[43] Devijver, P. A., and Kittler, J., “Pattern Recognition: A Statistical Approach”,
Englewood Cliffs, NJ: Prentice-Hall, 1982.

[44] Duda, R.O., Hart, P. E. & Stork, D. G., Pattern Classification, 2nd edition, John
Wiley & Sons Inc., 2001.

126

[45] El-Adawy, M., Keshk, H., Hamdy, A., and Dawoud, S., “Improvement of the
Preprocessing Stage for Arabic OCR System”, The Seventh Conference on
Language Engineering, Cairo, 2007.

[46] El-Yacoubi, A., Gilloux, M., Sabourin, R., Suen C. Y., “An HMM-Based
Approach for Off-Line Unconstrained Handwritten Word Modeling and
Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 21 No. 8, pp.752-760, August 1999.

[47] Feng, S., & Manmatha, R., “A Hierarchical, HMM-based Automatic Evaluation
of OCR Accuracy for a Digital Library of Books”, JCDL’06, June 11-15, 2006.

[48] Gillies, A.M., Erlandson, E.J., Trenkle, J.M, Schlosser, S.G., “Arabic Text
Recognition System”, Proceedings of the Symposium on Document Image
Understanding Technology, Annapolis, Maryland, 1999.

[49] Gilloux, M., Leroux, M., Bertille, J. M., “Strategies for handwritten word
recognition using hidden markov models”, Int. Conf. on Document Analysis
and Recognition, pp. 299-304, 1993.

[50] Gonzalez, R., Woods, R., Digital Image Processing, 2" ed., Prentice Hall, 2002.

[51] Gouda, A., “Arabic Handwritten Connected Character Recognition”, PhD
thesis, Dept. of Electronics & Electrical Communications, Faculty of
Engineering, Cairo University, Nov. 2004,

[52] Govindan, V. K., Shivaprasad, A. P., “Character Recognition, A review”,
Pattern Recognition, Vol. 23, No. 7, pp. 671-683, 1990.

[53] Guillevic, D., and Suen, C. Y., “Cursive script recognition: A sentence level
recognition scheme”, in Proc. Int. Workshop Frontiers in Handwriting
Recognition, pp. 216-223, 1994.

[54] Gray, R.M., “Vector Quantization”, IEEE Signal Processing Magazine, pp. 4-
29, Apr. 1984,

[55] Gray, R.M., Neuhoff, D. L., “Quantization”, IEEE Transactions on Information
Theory, Vol. 44, No. 6, pp. 2325-2383, October 1998

[56] Hamami, L., and Berkani, D., “Recognition System for Printed Multifont and
Multisize Arabic Characters”, The Arabian J. Science and Eng., Vol. 27, pp. 57-
72, 2002.

[57] Hamamoto, Y., “Recognition of hand-printed Chinese characters using Gabor
features”, in Proc. 13th International Conference on Pattern Recognition
(ICPR'96),Vol. 3 , 1996

[58] Jain, A. K. and Chandrasekaran, B., Dimensionality and sample size

considerations in pattern recognition practice. In P. R. Krishnaiah and L. N.
Kanal (Eds.), Handbook of statistics, Vol. 2, pp. 835-855, 1982.

127

[59] Jain, A. K., and Zongker, D., “Representation and recognition of handwritten
digits using deformable templates”, IEEE Trans. Pattern Anal. Machine Intell.,
Vol. 19, pp. 1386-1391, December 1997.

[60] Jain, A. K., Murthy, M.N. and Flynn, P.J., “Data clustering, a review”, ACM
Computing Surveys, Vol. No. 3, pp. 265-323, September 1999.

[61] Jain, A. K., W., R. P. Duin, and Mao, J., “Statistical pattern recognition: A
review”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, pp.
4-38, January 2000.

[62] Kanungo, T., Marton, G., and Bulbul, O., “OmniPage vs. Sakhr: Paired Model
Evaluation of Two Arabic OCR Products,” Proc. SPIE Conf. Document
Recognition and Retrieval (VI), pp. 109-121, 1999.

[63] Kapur, J.N., Saxena, .H.C., Mathematical Statistics, 7" edition, S. Chand & Co.
(Pvt.) LTD, 1972.

[64] Katz, S.M., “Estimation of Probabilities from Sparse Data for the Language
Model Component of a Speech Recognizer”, IEEE Transactions on Acoustics,
Speech and Signal Processing, Vol. 35, No. 3, March 1987.

[65] Khorsheed , M. S., and Clocksin, W. F. , “Structural Features Of Cursive
Arabic Script”, Proceedings of the Tenth British Machine Vision Conference,
Sep. 1999.

[66] Khorsheed, M. S., and Clocksin, W. F. , “Multi-Font Arabic Word
Recognition”, Proceedings of the International Conference on Pattern
Recognition (ICPR'00), pp.1051-4651, 2000.

[67] Khorsheed, M. S., “Off-line Arabic character recognition — A review”, Pattern
Analysis .and applications, Springer-Verlag, Vol. 5, No. 1, pp 31-45, 2002.

[68] Khorsheed, M.S. “Offline Recognition of Omnifont Arabic Text Using the
HMM ToolKit (HTK)”, Pattern Recognition Letters, Vol. 28 pp. 1563-1571,
2007,

[69] Lam, L., Lee, S. W., and Suen, C. Y., “Thinning methodologies; A
comprehensive survey”, |EEE Trans. Pattern Analysis and Machine
Intelligence, Vol. 14, pp. 869-885, Sep. 1992.

[70] Linde, Y., Buzo, A. and Gray, R. M., “An algorithm for vector quantizer
design”, IEEE Trans. Commun., Vol. COM-28, pp. 84-95, Jan. 1980.

[71] Lu, Z., Bazzi, |, Makhoul, J., Natarajan, P. and Schwartz, R., “A Robust,
Language-Independent OCR System”, Proc. 27th AIPR Workshop: Advances in
Computer-Assisted Recognition , SPIE Proceedings, Vol.3584, 1999.

[72] Madhvanath, S., Kim, G., and Govindaraju, V., “Chaincode contour processing

for handwritten word recognition”, IEEE Pattern. Anal. Machine Intell., Vol.
21, pp. 928-932, Sep. 1999.

128

[73] Magdy, W., Darwish, K., and Rashwan, M., “Fusion of Multiple Corrupted
Transmissions and Its Effect on Information Retrieval”, The Seventh
Conference on Language Engineering, Cairo, 2007.

[74] Mahmoud S, Abuhaiba I, Green R. “Skeletonization of Arabic characters using
clustering based skeletonization algorithm”, Pattern Recognition, Vol. 24, No.
5, pp. 453-464, 1991

[75] Makhoul, J., Schwartz, R., Lapre, C., and Bazzi, 1., “A Script- Independent
Methodology for Optical Character Recognition”, Pattern Recognition, Vol. 31,
pp. 1285-1294, 1998.

[76] Mohamed, M., Gader, P., “Handwritten word recognition using segmentation-
free hidden markov modeling and segmentation-based dynamic programming
techniques”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 18, No. 5, pp.548-554, 1996.

[77] Mantas, J., “An overview of character recognition methodologies”, Pattern
Recognition, Vol. 19, No. 6, pp. 425-430, 1986.

[78] Nadas, A., “On Turing's Formula for Word Probabilities”, IEEE Transactions
on Acoustics, Speech and Signal Processing, Vol. 33, No. 6, Dec. 1985.

[79] Nazif, A., A System for the Recognition of the Printed Arabic characters, M.Sc.
Thesis, Faculty of Engineering, Cairo University, 1975.

[80] Nixon, M.S., Aguado, A. S., Feature Extraction and Image Processing, 1%
edition, Newnes, 2002 .

[81] Pratt, W.K., Digital Image Processing, 2™ edition, John Wiley & Sons Inc.,
1991.

[82] Rabiner, L.; Juang, B., “An introduction to hidden Markov models”, IEEE
Signal Processing Magazine, Vol. 3, No. 1, pp. 4 — 16, Jan. 1986

[83] Rabiner, L. R., “A tutorial on hidden Markov models and selected applications
in speech recognition”, Proc. IEEE, Vol. 77, pp. 257-286, 1989.

[84] Rashwan, M., Fakhr, W.T., Attia, M., EI-Mahallawy, M., “Arabic OCR System
Analogous to HMM-Based ASR Systems; Implementation and Evaluation”,
Journal of Engineering and Applied Science, Cairo University,
www.Journal.eng.CU.edu.eg, Dec., 2007.

[85] Sarfraz, M., Nawaz, S. N., Khuraidly, A., “ Offline Arabic Text Recognition
system”, Proceedings of the 2003 International Conference on Geometric
Modeling and Graphics (GMAG’03), 2003 .

[86] Sari, T. and Sellami, M., “MOrpho-LEXical Analysis for Correcting OCR-
Generated Arabic Words (MOLEX)”, Proceedings of the Eighth International
Workshop on Frontiers in Handwriting Recognition (IWFHR’02), 2002

129

[87] Schutze, H., Manning, C. D., Foundations of Statistical Natural Language
Processing, the MIT Press, 2000.

[88] Srihari, S. N., Character Recognition, in Encyclopedia of Artificial Intelligence
2" Edition, pp. 138—150, John Wiley, 1992.

[89] Steinherz, T., Rivlin E., Intrator, N., “Offline cursive script word recognition - a
survey”, International Journal on Document Analysis and Recognition, Vol. 2,
pp. 90-110, 1999.

[90] Su, T. H., Zhang, T.W., Guan, D. J, and Huang, H. J., “Gabor-based
Recognizer for Chinese Handwriting from Segmentation-free Strategy”, Lecture
Notes on Computer Science (LNCS): Computer Analysis of Images and
Patterns, Springer-Verlag Berlin Heidelberg, VVol. 4673, pp. 539-546, 2007.

[91] Tibshirani, R., Walther, G., and Hastie, T., “Estimating the number of clusters
in a dataset via the gap statistic ”, J. Royal. Statist . Soc. B, Vol. 63, No. 2, pp.
411-423, 2001.

[92] Touj, S., Essoukri, N., Amara, B. and Amiri, A. “Generalized Hough Transform
for Arabic Optical Character Recognition”, Proceedings of the Seventh
International Conference on Document Analysis and Recognition (ICDAR’03),
2003.

[93] Trier, O. D., Jain, A. K., and Taxt, T., “Feature extraction method for character
recognition; A survey”, Pattern Recognition, VVol. 29, No. 4, pp. 641-662, 1996.

[94] Yaseen, M. et al, “Building Annotated Written and Spoken Arabic LR ’s in
NEMLAR Project”, In Proceedings of the Language Resources and Evaluation
Conference LRECO06, Genoa,. Italy, May 2006

[95] Young, S., et al., HTK Book, Cambridge University Engineering, 2006

[96] Yu, B., Jain, A. K., “A Robust and Fast Skew Detection Algorithm for Generic
Documents”, Pattern Recognition,1996

[97] Zeki, A. M., “The Segmentation Problem in Arabic Character Recognition The
State Of The Art”, 1% International Conference on Information and
Communication Technologies (ICICT), Aug. 2005.

130

Al padlall

e Traiia lo g pa aay ol Gaill IV Gopail) oUas G and onaall 481 a8 e

Oo LESH Al aag BalSie Ll el 4 daih e gleall L o) 65 Jleel (iala

2] S plial 4l ¢ sahaall Gaill IV sl Gapail) o Ay jlail) cilaladiuy)
Aaall Gl slaall L ol 935 clipdad (10 5

danily Lol aly sk o 58 die daladiind &5 4y laly o giall Gaill i guall (o il

aldas o aaid allall (S a) (e ASY QY1 Al a5 aliatia Cijall 4 giSal) il

Cligeaill aie llia JI Lad a3lal & (55550 58 pa jigia ye Gaill 3 gaall (o yail

O Jsire 5083 5a g b Jeandl o 35080 5 Ladl) LWl Jase (anddlsy glaty Lagd

A_”\s.ﬂ\ed_cu.cMccdﬂ\uﬂubm\e)&)}aui@utnd_awbcf:).&}iu‘

k;—‘“\jj}“ de\ Sl 5A SH ‘ﬁ (o J‘\)j\ S) Uu XY (R WS Lﬁ} 4 Lz a :‘—’j’d 4 S“, Ay
all s e oyl ae el Sl ASE 33 Ja a2l o all

skl 5 Gl (e Lale 6530 jlae (o Lei jad o Al maliall G 2al G (55

Tae 5 SEY) 8 (HMM) daidall GsS e zilai Lo 2l Gaill 5 guall ol G 5o «

e Gyl el (G Agsall CasS e zilal Cillen yie 5,08 (e iy 45y @lldg

ziai e 2l (ASR) @isall V) Gapaill 8 Jladl g8 LS aal s o 8 4USH Cilas
Ll al s 3 e axdioal) dadal) Ca S

5 B aaeie o) paill e V) Gl Al Gudaty &l Al)l o3 b
Dshes o8 allan allaiu¥) pe dgidall CasS e il o 2l <y jiall - giie o saall

A.\Sﬂ\ SELE e)&l\jk\.\}}“ IRRE XD UA}A.JLI aalall C—\LASS&\))M QJ.\AS‘@\M
Ziladl Liahadinl 4slll o jial 7 gidall Hlaill 13 sy e Ly dee 4y dluas,
ALl e 2 el 5 aoall e 2l dgad) (oSl

et e 28l paill A pall oyl A liadiy & geall V) o gail) pUail G
Oa S aall Bad e 5 ol g 48 A3 Ol jpaall de ganal Gy il dpddall oS
o34 8 b A Al (a geaill b cuiag) el pe 4l clalSl) d Uadld) Jaes

.Q\‘}M\a.&s Mwmjcjhe}mﬁb}\

o2 b ad Cgall (V) Gyl 5 paill Asall Coyall (e adbal)) Talsia
O Laglinna 4yl 4l sl Gaill 5 gucall (b peill JalSie aldas Jolasi g - yda A)
Llaia¥) g2y s alainWl iad) G S jle il e 2ilall Copeall V) Ca il ol
allas aazat Al 1) 028 (8 Leall Jum sl 3 il gy el gl o LS 4y gad dilian) 2 laly
h)@\ﬁmdﬂ\u\w\hij\uﬁ)ucdwéceam\ua.\ﬂu_i}..a&\u)a_\]\
ol 40 S G geaill 5 gaall oyl (g AN dadail) (u deaiall b adle)l o2a b
Al Al Gl 5 dAipee A sl Aluany 3aie yoadl 5 agaall s LLLY) saaaial) jaliatie
Y e Ayl

	Covers
	Table of Contents
	Abstract
	Chapter1_Introduction
	Introduction
	i) The connectivity challenge
	Whether handwritten or font written, Arabic text can only be scripted cursively; i.e. graphemes are connected to one another within the same word with this connection interrupted at few certain characters or at the end of the word. This necessitates any Arabic OCR system to not only do the traditional grapheme recognition task but do another tougher grapheme segmentation one (see Figure (1.2)). To make things even harder, both of these tasks are mutually dependent and must hence be done simultaneously.
	ii) The dotting challenge
	Dotting is extensively used to differentiate characters sharing similar graphemes. According to Figure (1.3), where some example sets of dotting-differentiated graphemes are shown, it is apparent that the differences between the members of the same set are small. Whether the dots are eliminated before the recognition process, or recognition features are extracted from the dotted script, dotting is a significant source of confusion – hence recognition errors – in Arabic font-written OCR systems especially when run on noisy documents; e.g. those produced by photocopiers.
	iii) The multiple grapheme cases challenge
	Due to the mandatory connectivity in Arabic orthography; the same grapheme representing the same character can have multiple variants according to its relative position within the Arabic word segment {Starting, Middle, Ending, Separate} as exemplified by the 4 variants of the Arabic character “ع” shown in bold in Figure (1.4).
	iv) The ligatures challenge
	To make things even more complex, certain compounds of characters at certain positions of the Arabic word segments are represented by single atomic graphemes called ligatures. Ligatures are found in almost all the Arabic fonts, but their number depends on the involvement of the specific font in use. Traditional Arabic font for example contains around 220 graphemes, and another common less involved font (with fewer ligatures) like Simplified Arabic contains around 151 graphemes. Compare this to English where 40 or 50 graphemes are enough. A broader grapheme set means higher ambiguity for the same recognition methodology, and hence more confusion. Figure (1.5) illustrates some ligatures in the famous font “Traditional Arabic”.
	iv) The overlapping challenge
	Characters in a word may overlap vertically even without touching as shown in Figure (1.6).
	v) Size variation challenge
	Different Arabic graphemes do not have a fixed height or a fixed width. Moreover, neither the different nominal sizes of the same font scale linearly with their actual line heights, nor the different fonts with the same nominal size have a fixed line height.
	vi) The diacritics challenge
	Arabic diacritics are used in practice only when they help in resolving linguistic ambiguity of the text. The problem of diacritics with font written Arabic OCR is that their direction of flow is vertical while the main writing direction of the body Arabic text is horizontal from right to left. (See Figure (1.7)) Like dots; diacritics – when existent - are a source of confusion of font-written OCR systems especially when run on noisy documents, but due to their relatively larger size they are usually preprocessed.
	Figure (1.7): Arabic text with diacritics.
	Figure (1.8): Typical Components of an OCR-System

	Chapter2_Methodologies of ACR Systems
	Methodologies of OCR Systems;
	Theory and Literature Survey
	 Crossings and Distances
	 Moments
	 Projections

	Chapter3_Histogram-Based Lines&Words Decomposition for Arabic Omni Font-Written OCR Systems
	chapter4_features
	chapter5_Vector Quantization and Clustering
	chapter6_HMM
	Figure (6.4): An Example of Left-to-Right HMMs

	chapter7_Language Model
	Statistical Language Models
	and
	 Character Recognition
	7.3 . The Language Phenomenon from a Statistical Perspective
	Corrupted word
	Correct word
	حلال
	قيره

	chapter 8_OCR Ssystem
	chapter9_Conclusion abd Future work
	REFERENCES
	الملخص العربي

