Statistical Machine Translation: Trends & Challenges
2nd International Conference on Arabic Language Resources & Tools
21st April 2009

Prof. Andy Way
NCLT/CNGL, School of Computing, Dublin City University, Dublin 9, Ireland
away@computing.dcu.ie

Dr. Hany Hassan
IBM Cairo HLT Group
IBM Egypt
hanyh@eg.ibm.com
Overview: Part 1 (AW)
14:15 – 16:15

• Why Corpus-Based MT?
• Corpora, and Matters Arising
• Language Modelling
• Translation Models
• Word and Phrase Alignments
• Decoding
• Evaluation
Overview: Part 2 (HH)
16:30 – 18:30

- Factored Models
- Discriminative Training
- Supertag Models of SMT
- Open-Source Tools
Why Corpus-Based MT?

• the (relative) failure of rule-based approaches
• the increasing availability of machine-readable text
• the increase in capability of hardware (CPU, memory, disk space) with decrease in cost
Sine qua non

A prerequisite for Data-Driven MT (and also TM, which is not MT, but rather CAT):

- Example-Based MT (EBMT)
- Statistical MT (SMT)
- Hybrid Models which use some probabilistic processing

is a parallel corpus (or bitext) of aligned sentences.
Corpus-Based MT is here to stay

These approaches are now *mainstream*:

- More researchers are developing corpus-based systems;
- 1st company to use SMT now exists: www.languageweaver.com;
- Irish MT company Traslán (www.traslan.ie) uses EBMT;
- In recent large-scale evaluations, corpus-based MT systems come first.

Two caveats:
- Most industrial systems are still rule-based (but cf. Google’s online systems now SMT);
- Current mainstream evaluation metrics favour *n*-gram-based systems (i.e. SMT).
Statistical Machine Translation

Translate, translate...

Hmm, every time he sees "banco", he either types "bank" or "bench" ... but if he sees "banco de...", he always types "bank", never "bench"...

Human-translated documents

Thanks to Kevin Knight ...
Your assignment, translate this to Arcturan:

<table>
<thead>
<tr>
<th>Centauri/Arcturan [Knight, 1997]</th>
<th>farok crrrok hihok yorok clok kantok ok-yurp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. ok-foon ororok sprok</td>
<td>7a. lalok farok ororok lalok sprok izok enemok</td>
</tr>
<tr>
<td>1b. at-foon bichat dat</td>
<td>7b. wat jjat bichat wat dat vat eneat</td>
</tr>
<tr>
<td>2a. ok-drubel ok-foon anok plok sprok</td>
<td>8a. lalok brok anok plok nok</td>
</tr>
<tr>
<td>2b. at-drubel at-foon pippat rrat dat</td>
<td>8b. iat lat pippat rrat nnat</td>
</tr>
<tr>
<td>3a. erok sprok izok hihok ghirok</td>
<td>9a. wiwok nok izok kantok ok-yurp</td>
</tr>
<tr>
<td>3b. totat dat arrat vat hilat</td>
<td>9b. totat nnatquat oloat at-yurp</td>
</tr>
<tr>
<td>4a. ok-foon anok drok brok jok</td>
<td>10a. lalok mok nok yorok ghirok clok</td>
</tr>
<tr>
<td>4b. at-foon krat pippat sat lat</td>
<td>10b. wat nnat gat mat bat hilat</td>
</tr>
<tr>
<td>5a. wiwok farok izok stok</td>
<td>11a. lalok nok crrrok hihok yorok zanzanok</td>
</tr>
<tr>
<td>5b. totat jjat quat cat</td>
<td>11b. wat nnat arrat mat zanzanat</td>
</tr>
<tr>
<td>6a. lalok sprok izok jok stok</td>
<td>12a. lalok rarok nok izok hihok mok</td>
</tr>
<tr>
<td>6b. wat dat kratquat cat</td>
<td>12b. wat nnat forat arrat vat gat</td>
</tr>
</tbody>
</table>
Centauri/Arcturan [Knight, 1997]

Your assignment, translate this to Arcturan:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.</td>
<td>ok-voon ororok sprok .</td>
<td>7a.</td>
</tr>
<tr>
<td>1b.</td>
<td>at-voon bichat dat .</td>
<td>7b.</td>
</tr>
<tr>
<td>2a.</td>
<td>ok-drubel ok-voon anok plok sprok .</td>
<td>8a.</td>
</tr>
<tr>
<td>2b.</td>
<td>at-drubel at-voon pippat rrat dat .</td>
<td>8b.</td>
</tr>
<tr>
<td>3a.</td>
<td>erok sprok izok hihok ghirok .</td>
<td>9a.</td>
</tr>
<tr>
<td>3b.</td>
<td>totat dat arrat vat hilat .</td>
<td>9b.</td>
</tr>
<tr>
<td>4a.</td>
<td>ok-voon anok drok brok jok .</td>
<td>10a.</td>
</tr>
<tr>
<td>4b.</td>
<td>at-voon krat pippat sat lat .</td>
<td>10b.</td>
</tr>
<tr>
<td>5a.</td>
<td>wiwok farok izok stok .</td>
<td>11a.</td>
</tr>
<tr>
<td>5b.</td>
<td>totat jjat quart cat .</td>
<td>11b.</td>
</tr>
<tr>
<td>6a.</td>
<td>lalok sprok izok jok stok .</td>
<td>12a.</td>
</tr>
<tr>
<td>6b.</td>
<td>wat dat krat quart cat .</td>
<td>12b.</td>
</tr>
</tbody>
</table>
Your assignment, translate this to Arcturan:

<table>
<thead>
<tr>
<th>Arcturan</th>
<th>Centauri/Arcturan [Knight, 1997]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. ok-voon ororok sprok .</td>
<td>7a. lalok farok ororok lalok sprok izok enemok .</td>
</tr>
<tr>
<td>1b. at-voon bichat dat .</td>
<td>7b. wat jjat bichat wat dat vat eneat .</td>
</tr>
<tr>
<td>2a. ok-drubel ok-voon anok plok sprok .</td>
<td>8a. lalok brok anok plok nok .</td>
</tr>
<tr>
<td>2b. at-drubel at-voon pippat rrat dat .</td>
<td>8b. iat lat pippat rrat nnat .</td>
</tr>
<tr>
<td>3a. erok sprok izok hihok ghirok .</td>
<td>9a. wiwok nok izok kantok ok-yurp .</td>
</tr>
<tr>
<td>3b. totat dat arrat vat hilat .</td>
<td>9b. totat nnat quat oloat at-yurp .</td>
</tr>
<tr>
<td>4a. ok-voon anok drok brok jok .</td>
<td>10a. lalok mok nok yorok ghirok clok .</td>
</tr>
<tr>
<td>4b. at-voon krat pippat sat lat .</td>
<td>10b. wat nnat gat mat bat hilat .</td>
</tr>
<tr>
<td>5a. wiwok farok izok stok .</td>
<td>11a. lalok nok crrrok hihok yorok zanzanok .</td>
</tr>
<tr>
<td>5b. totat jjat quat cat .</td>
<td>11b. wat nnat arrat mat zanzanat .</td>
</tr>
<tr>
<td>6a. lalok sprok izok jok stok .</td>
<td>12a. lalok rarok nok izok hihok mok .</td>
</tr>
<tr>
<td>6b. wat dat krat quat cat .</td>
<td>12b. wat nnat forat arrat vat gat .</td>
</tr>
</tbody>
</table>
Centauri/Arcturan [Knight, 1997]

Your assignment, translate this to Arcturan:

<table>
<thead>
<tr>
<th>Arcturan</th>
<th>1a. ok-voon ororok sprok .</th>
<th>1b. at-voon bichat dat .</th>
<th>7a. lalok farok ororok lalok sprok izok enemok .</th>
<th>7b. wat jjat bichat wat dat vat eneat .</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2a. ok-drubel ok-voon anok plok sprok .</td>
<td>2b. at-drubel at-voon pippat rrat dat .</td>
<td>8a. lalok brok anok plok nok .</td>
<td>8b. iat lat pippat rrat nnat .</td>
</tr>
<tr>
<td></td>
<td>3a. erok sprok izok hihok ghirok .</td>
<td>3b. totat dat arrat vat hilat .</td>
<td>9a. wiwok nok izok kantok ok-yurp .</td>
<td>9b. totat nnat quat oloat at-yurp .</td>
</tr>
<tr>
<td></td>
<td>4a. ok-voon anok drok brok jok .</td>
<td>4b. at-voon krat pippat sat lat .</td>
<td>10a. lalok mok nok yorok ghirok clok .</td>
<td>10b. wat nnat gat mat bat hilat .</td>
</tr>
<tr>
<td></td>
<td>5a. wiwok farok izok stok .</td>
<td>5b. totat jjat quat cat .</td>
<td>11a. lalok nok cerrrok hihok yorok zanzanok .</td>
<td>11b. wat nnat arrat mat zanzanat .</td>
</tr>
<tr>
<td></td>
<td>6a. lalok sprok izok jok stok .</td>
<td>6b. wat dat krat quat cat .</td>
<td>12a. lalok rarok nok izok hihok mok .</td>
<td>12b. wat nnat forat arrat vat gat .</td>
</tr>
<tr>
<td>Arcturan</td>
<td>Centauri/Arcturan [Knight, 1997]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. ok-voon ororok sprok .</td>
<td>7a. lalok farok ororok lalok sprok izok enemok .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b. at-voon bichat dat .</td>
<td>7b. wat jjat bichat wat dat vat eneat .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. ok-drubel ok-voon anok plok sprok .</td>
<td>8a. lalok brok anok plok nok .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b. at-drubel at-voon pippat rrat dat .</td>
<td>8b. iat lat pippat rrat nnat .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a. erok sprok izok hihok ghirok .</td>
<td>9a. wiwok nok izok kantok ok-yurp .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b. totat dat arrat vat hilat .</td>
<td>9b. totat nnat quot oloat at-yurp .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a. ok-voon anok drok brok jok .</td>
<td>10a. lalok mok nok yorok ghirok clok .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b. at-voon krat pippat sat lat .</td>
<td>10b. wat nnat gat mat bat hilat .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a. wiwok farok izok stok .</td>
<td>11a. lalok nok crrook hihok yorok zanzanok .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b. totat jjat quat cat .</td>
<td>11b. wat nnat arrat mat zanzanat .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a. lalok sprok izok jok stok .</td>
<td>12a. lalok rarok nok izok hihok mok .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6b. wat dat krat quat cat .</td>
<td>12b. wat nnat forat arrat vat gat .</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Your assignment, translate this to Arcturan:

<table>
<thead>
<tr>
<th>Centauri/Arcturan [Knight, 1997]</th>
</tr>
</thead>
</table>
| **1a. ok-voon ororok sprok** | **7a. lalok farok ororok lalok sprok izok enemok**
|
| **1b. at-voon bichat dat** | **7b. wat jjat bichat wat dat vat eneat**
|
| **2a. ok-drubel ok-voon anok plok sprok** | **8a. lalok brok anok plok nok**
| **2b. at-drubel at-voon pippat rrat dat** | **8b. iat lat pippat rrat nnat**
|
| **3a. erok sprok izok hihok ghirok** |
| **3b. totat dat arrat vat hilat** | **9a. wiwok nok izok kantok ok-yurp**
|
| **4a. ok-voon anok drok brok jok** | **9b. totat nnat quat oloat at-yurp**
| **4b. at-voon krat pippat sat lat** | **10a. lalok mok nok yorok ghirok clok**
|
| **5a. wiwok farok izok stok** | **10b. wat nnat gat mat bat hilat**
| **5b. totat jjat quat cat** | **11a. lalok nok crrrook hihok yorok zanzanok**
|
| **6a. lalok sprok izok jok stok** | **11b. wat nnat arrat mat zanzanat**
| **6b. wat dat kratquat cat** | **12a. lalok rarok nok izok hihok mok**
<p>|

| farok crrrook hihok yorok clok kantok ok-yurp |

|</p>
<table>
<thead>
<tr>
<th></th>
<th>Arcturan</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.</td>
<td>ok-voon ororok sprok .</td>
<td></td>
</tr>
<tr>
<td>1b.</td>
<td>at-voon bichat dat .</td>
<td></td>
</tr>
<tr>
<td>2a.</td>
<td>ok-drubel ok-voon anok plok sprok .</td>
<td></td>
</tr>
<tr>
<td>2b.</td>
<td>at-drubel at-voon pippat rrat dat .</td>
<td></td>
</tr>
<tr>
<td>3a.</td>
<td>erok sprok izok hihok ghirok .</td>
<td></td>
</tr>
<tr>
<td>3b.</td>
<td>totat dat arrat vat hilat .</td>
<td></td>
</tr>
<tr>
<td>4a.</td>
<td>ok-voon anok drok brok jok .</td>
<td></td>
</tr>
<tr>
<td>4b.</td>
<td>at-voon krat pippat sat lat .</td>
<td></td>
</tr>
<tr>
<td>5a.</td>
<td>wiwok farok izok stok .</td>
<td></td>
</tr>
<tr>
<td>5b.</td>
<td>totat jjat quat cat .</td>
<td></td>
</tr>
<tr>
<td>6a.</td>
<td>lalok sprok izok jok stok .</td>
<td></td>
</tr>
<tr>
<td>6b.</td>
<td>wat dat krat quat cat .</td>
<td></td>
</tr>
<tr>
<td>7a.</td>
<td>lalok farok ororok lalok sprok izok enemok .</td>
<td></td>
</tr>
<tr>
<td>7b.</td>
<td>wat jjat bichat wat dat vat eneat .</td>
<td></td>
</tr>
<tr>
<td>8a.</td>
<td>lalok brok anok plok nok .</td>
<td></td>
</tr>
<tr>
<td>8b.</td>
<td>iat lat pippat rrat nnat .</td>
<td></td>
</tr>
<tr>
<td>9a.</td>
<td>wiwok nok izok kantok ok-yurp .</td>
<td></td>
</tr>
<tr>
<td>9b.</td>
<td>totat nnat quat oloat at-yurp .</td>
<td></td>
</tr>
<tr>
<td>10a.</td>
<td>lalok mok nok yorok ghirok clok .</td>
<td></td>
</tr>
<tr>
<td>10b.</td>
<td>wat nnat gat mat bat hilat .</td>
<td></td>
</tr>
<tr>
<td>11a.</td>
<td>lalok nok crrrook hihok yorok zanzanok .</td>
<td></td>
</tr>
<tr>
<td>11b.</td>
<td>wat nnat arrat mat zanzanat .</td>
<td></td>
</tr>
<tr>
<td>12a.</td>
<td>lalok rarok nok izok hihok mok .</td>
<td></td>
</tr>
<tr>
<td>12b.</td>
<td>wat nnat forat arrat vat gat .</td>
<td></td>
</tr>
<tr>
<td>Centauri/Arcturan [Knight, 1997]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your assignment, translate this to Arcturan:</td>
<td>farok crrrok hihok yorok clok kantok ok-yurp</td>
<td></td>
</tr>
<tr>
<td>1a. ok-voon ororok sprok .</td>
<td>7a. lalok farok ororok lalok sprok izok enemok .</td>
<td></td>
</tr>
<tr>
<td>1b. at-voon bichat dat .</td>
<td>7b. wat jjat bichat wat dat vat eneat .</td>
<td></td>
</tr>
<tr>
<td>2a. ok-drubel ok-voon anok plok sprok .</td>
<td>8a. lalok brok anok plok nok .</td>
<td></td>
</tr>
<tr>
<td>2b. at-drubel at-voon pippat rrat dat .</td>
<td>8b. iat lat pippat rrat nnat .</td>
<td></td>
</tr>
<tr>
<td>3a. erok sprok izok hihok ghirok .</td>
<td>9a. wiwok nok izok kantok ok-yurp .</td>
<td></td>
</tr>
<tr>
<td>3b. totat dat arrat vat hilat .</td>
<td>9b. totat nnat quat oloat at-yurp .</td>
<td></td>
</tr>
<tr>
<td>4a. ok-voon anok drok brok jok .</td>
<td>10a. lalok mok nok yorok ghirok clok .</td>
<td></td>
</tr>
<tr>
<td>4b. at-voon krat pippat sat lat .</td>
<td>10b. wat nnat gat mat bat hilat .</td>
<td></td>
</tr>
<tr>
<td>5a. wiwok farok izok stok .</td>
<td>11a. lalok nok crrrok hihok yorok zanzanok .</td>
<td></td>
</tr>
<tr>
<td>5b. totat jjat quat cat .</td>
<td>11b. wat nnat arrat maf zanzanat .</td>
<td></td>
</tr>
<tr>
<td>6a. lalok sprok izok jok stok .</td>
<td>12a. lalok rarok nok izok hihok mok .</td>
<td></td>
</tr>
<tr>
<td>6b. wat dat krat quat cat .</td>
<td>12b. wat nnat forat arrat vat gat .</td>
<td></td>
</tr>
</tbody>
</table>
Centauri/Arcturan [Knight, 1997]

Your assignment, translate this to Arcturan:

<table>
<thead>
<tr>
<th>Arcturan</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. ok-voon ororok sprok .</td>
<td>7a. lalok farok ororok lalok sprok izok enemok .</td>
</tr>
<tr>
<td>1b. at-voon bichat dat .</td>
<td>7b. wat jjat bichat wat dat vat eneat .</td>
</tr>
<tr>
<td>2a. ok-drubel ok-voon anok plok sprok .</td>
<td>8a. lalok brok anok plok nok .</td>
</tr>
<tr>
<td>2b. at-drubel at-voon pippat rrat dat .</td>
<td>8b. iat lat pippat rrat nnat .</td>
</tr>
<tr>
<td>3a. erok sprok izok hihok ghirok .</td>
<td>9a. wiwok nok izok kantok ok-yurp .</td>
</tr>
<tr>
<td>3b. totat dat arrat vat hilat .</td>
<td>9b. totat nnat quat oloat at-yurp .</td>
</tr>
<tr>
<td>4a. ok-voon anok drok brok jok .</td>
<td>10a. lalok mok nok yorok ghirok clok .</td>
</tr>
<tr>
<td>4b. at-voon krat pippat sat lat .</td>
<td>10b. wat nnat gat mat bat hilat .</td>
</tr>
<tr>
<td>5a. wiwok farok izok stok .</td>
<td>11a. lalok nok crrrook hihok yorok zanzanok .</td>
</tr>
<tr>
<td>5b. totat jjatquat cat .</td>
<td>11b. wat nnat arrat mat zanzanat .</td>
</tr>
<tr>
<td>6a. lalok sprok izok jok stok .</td>
<td>12a. lalok rarok nok izok hihok mok .</td>
</tr>
<tr>
<td>6b. wat dat kratquat cat .</td>
<td>12b. wat nnat forat arrat vat gat .</td>
</tr>
</tbody>
</table>
Your assignment, translate this to Arcturan:

<table>
<thead>
<tr>
<th>Arcturan</th>
<th>Centauri/Arcturan [Knight, 1997]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. ok-voon ororok sprok .</td>
<td>7a. lalok farok ororok lalok sprok izok enemok .</td>
</tr>
<tr>
<td>1b. at-voon bichat dat .</td>
<td>7b. wat jjat bichat wat dat vat eneat .</td>
</tr>
<tr>
<td>2a. ok-drubel ok-voon anok plok sprok .</td>
<td>8a. lalok brok anok plok nok .</td>
</tr>
<tr>
<td>2b. at-drubel at-voon pippat rrat dat .</td>
<td>8b. iat lat pippat rrat nnat .</td>
</tr>
<tr>
<td>3a. erok sprok izok hihok ghirok .</td>
<td>9a. wiwok nok izok kantok ok-yurp .</td>
</tr>
<tr>
<td>3b. totat dat arrat vat hilat .</td>
<td>9b. totat nnatquat oloat at-yurp .</td>
</tr>
<tr>
<td>4a. ok-voon anok drok brok jok .</td>
<td>10a. lalok mok nok yorok ghirok clok .</td>
</tr>
<tr>
<td>4b. at-voon krat pippat sat lat .</td>
<td>10b. wat nnat gat mat bat hilat .</td>
</tr>
<tr>
<td>5a. wiwok farok izok stok .</td>
<td>11a. lalok nok crrrok hihok yorok zanzanok .</td>
</tr>
<tr>
<td>5b. totat jjat quat cat .</td>
<td>11b. wat nnat arrat mat zanzanat .</td>
</tr>
<tr>
<td>6a. lalok sprok izok jok stok .</td>
<td>12a. lalok rarok nok izok hihok mok .</td>
</tr>
<tr>
<td>6b. wat dat krat quat cat .</td>
<td>12b. wat nnat forat arrat vat gat .</td>
</tr>
<tr>
<td>Arcturan</td>
<td>Centauri/Arcturan [Knight, 1997]</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1a. ok-voon ororok sprok .</td>
<td>7a. lalok farok ororok lalok sprok izok enemok .</td>
</tr>
<tr>
<td>1b. at-voon bichat dat .</td>
<td>7b. wat jjat bichat wat dat vat eneat .</td>
</tr>
<tr>
<td>2a. ok-drubel ok-voon anok plok sprok .</td>
<td>8a. lalok brok anok plok nok .</td>
</tr>
<tr>
<td>2b. at-drubel at-voon pippat rrat dat .</td>
<td>8b. iat lat pippat rrat nnat .</td>
</tr>
<tr>
<td>3a. erok sprok izok hihok ghirok .</td>
<td>9a. wiwok nok izok kantok ok-yurp .</td>
</tr>
<tr>
<td>3b. totat dat arrat vat hilat .</td>
<td>9b. totat nnat quat oloat at-yurp .</td>
</tr>
<tr>
<td>4a. ok-voon anok drok brok jok .</td>
<td>10a. lalok mok nok yorok ghirok clok .</td>
</tr>
<tr>
<td>4b. at-voon krat pippat sat lat .</td>
<td>10b. wat nnat gat mat bat hilat .</td>
</tr>
<tr>
<td>5a. wiwok farok izok stok .</td>
<td>11a. lalok nok crrrok hihok yorok zanzanok .</td>
</tr>
<tr>
<td>5b. totat jjat quat cat .</td>
<td>11b. wat nnat arrat maf zandanat .</td>
</tr>
<tr>
<td>6a. lalok sprok izok jok stok .</td>
<td>12a. lalok rarok nok izok hihok mok .</td>
</tr>
<tr>
<td>6b. wat dat krat quat cat .</td>
<td>12b. wat nnat forat arrat vat gat .</td>
</tr>
</tbody>
</table>

Your assignment, translate this to Arcturan: farok crrrok hihok yorok clok kantok ok-yurp

cognate?
Centauri/Arcturan [Knight, 1997]

Your assignment, put these words in order: \{ jjat, arrat, mat, bat, oloat, at-yurp \}

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. ok-voon ororok sprok .</td>
<td>7a. lalok farok ororok lalok sprok izok enemok .</td>
</tr>
<tr>
<td>1b. at-voon bichat dat .</td>
<td>7b. wat jjat bichat wat dat vat eneat .</td>
</tr>
<tr>
<td>2a. ok-drubel ok-voon anok plok sprok .</td>
<td>8a. lalok brok anok plok nok .</td>
</tr>
<tr>
<td>2b. at-drubel at-voon pippat rrat dat .</td>
<td>8b. iat lat pippat rrat nnat .</td>
</tr>
<tr>
<td>3a. erok sprok izok hihok ghirok .</td>
<td>9a. wiwok nok izok kantok ok-yurp .</td>
</tr>
<tr>
<td>3b. totat dat arrat vat hilat . (3b)</td>
<td>9b. totat nnat quat oloat at-yurp .</td>
</tr>
<tr>
<td>4a. ok-voon anok drok brok jok .</td>
<td>10a. lalok mok nok yorok ghirok clok .</td>
</tr>
<tr>
<td>4b. at-voon krat pippat sat lat .</td>
<td>10b. wat nnat gat mat bat hilat .</td>
</tr>
<tr>
<td>5a. wiwok farok izok stok .</td>
<td>11a. lalok nok crrrok hihok yorok zanzanok .</td>
</tr>
<tr>
<td>5b. totat jjat quat cat . (5b)</td>
<td>11b. wat nnat arrat maf zanzanat .</td>
</tr>
<tr>
<td>6a. lalok sprok izok jok stok .</td>
<td>12a. lalok rarok nok izok hihok mok .</td>
</tr>
<tr>
<td>6b. wat dat kratquat cat .</td>
<td>12b. wat nnat forat arrat vat gat .</td>
</tr>
</tbody>
</table>

Note:
- "zero fertility" highlights the importance of fertility in the context of the assignment.
Your assignment, put these words in order:
\{ jjat, arrat, mat, bat, oloat, at-yurp \}

- There are 6! different orders possible, so 720 different translations.

- Best order (according to placement in TL side of the corpus is as given above):
 - Not just unigrams, but \(n \)-grams also ...
<table>
<thead>
<tr>
<th>English</th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. Garcia and associates.</td>
<td>7a. the clients and the associates are enemies.</td>
</tr>
<tr>
<td>1b. Garcia y asociados.</td>
<td>7b. los clientes y los asociados son enemigos.</td>
</tr>
<tr>
<td>2a. Carlos Garcia has three associates.</td>
<td>8a. the company has three groups.</td>
</tr>
<tr>
<td>2b. Carlos Garcia tiene tres asociados.</td>
<td>8b. la empresa tiene tres grupos.</td>
</tr>
<tr>
<td>3a. his associates are not strong.</td>
<td>9a. its groups are in Europe.</td>
</tr>
<tr>
<td>3b. sus asociados no son fuertes.</td>
<td>9b. sus grupos estan en Europa.</td>
</tr>
<tr>
<td>4a. Garcia has a company also.</td>
<td>10a. the modern groups sell strong pharmaceuticals.</td>
</tr>
<tr>
<td>4b. Garcia tambien tiene una empresa.</td>
<td>10b. los grupos modernos venden medicinas fuertes.</td>
</tr>
<tr>
<td>5a. its clients are angry.</td>
<td>11a. the groups do not sell zenzanine.</td>
</tr>
<tr>
<td>5b. sus clientes estan enfadados.</td>
<td>11b. los grupos no venden zanzanina.</td>
</tr>
<tr>
<td>6a. the associates are also angry.</td>
<td>12a. the small groups are not modern.</td>
</tr>
<tr>
<td>6b. los asociados tambien estan enfadados.</td>
<td>12b. los grupos pequenos no son modernos.</td>
</tr>
</tbody>
</table>
Some more to try ...

- iat lat pippat eneat hilat oloat at-yurp.
- totat nnat forat arrat mat bat.
- wat dat quat cat uskrat at-drubel.
Some more to try ...

- iat lat pippat eneat hilat oloat at-yurp.
- totat nnat forat arrat mat bat.
- wat datquat cat uskrat at-drubel.

... if you have trouble sleeping at nights!
What did we learn?

• what parallel corpora look like (more on this soon);
• viewing parallel corpora through the ‘eyes’ of a computer;
• how relevant parallel corpora are for MT;
• how to build bilingual dictionaries from parallel corpora;
• how cognate information may be useful in MT;
• how to do word alignment ...
What else do we need to know?

• about word alignment (=dictionary writing) on a larger scale;
• about phrasal alignment, the norm in real translation data;
• about unalignable words;
• the importance of knowing the target language (vs. source) in making fluent translations;
• the importance of short sentence pairs (where alignment possibilities are restricted) in helping disambiguate/align longer sentence pairs;
• about locality in word order shifts;
• how to guess the meanings/translations of unknown words;
• about how much uncertainty the machine faces in working with limited data ...
Can such methods be scaled to ‘real’ MT?

- Availability of monolingual and bilingual corpora?
- Possibility of sentence-aligning bilingual corpora?
- Can we write an algorithm to extract the translation dictionary?
- Can we write an algorithm to extract the monolingual word pair counts?
- Can we write an algorithm to generate translations using our translation dictionary and word pair counts?
Can such methods be scaled to ‘real’ MT?

- Availability of monolingual and bilingual corpora?
- Possibility of sentence-aligning bilingual corpora?
- Can we write an algorithm to extract the translation dictionary?
- Can we write an algorithm to extract the monolingual word pair counts?
- Can we write an algorithm to generate translations using our translation dictionary and word pair counts?

- WILL THE TRANSLATIONS PRODUCED BE ANY GOOD?
Parallel Corpora

• Hugely important ... but not available in a wide range of language pairs:
 – Chinese—English: Hong Kong data
 – French—English: Canadian Hansards
 – Older EU pairs: Europarl [Koehn 04]
 – Newer EU pairs: JRC-Acquis Communautaire
 – Arabic—English: LDC Data
 – NIST, IWSLT, WMT, TC-STAR Evaluations
Good Quality Language & Translation Models

• Any statistical approach to MT requires the availability of aligned bilingual corpora which are:

 –large;
 –good-quality;
 –representative.
Corpus 1

Mary and John have two children. The children that Mary and John have are aged 3 and 4. John has blue eyes.

Question 1: what's $P(\text{have})$ vs. $P(\text{has})$ in a corpus?

Question 2: what's $P(\text{have} \mid \text{John})$ vs. $P(\text{has} \mid \text{John})$ in a corpus?

Question 3: what’s $P(\text{have})$ vs. $P(\text{has})$ in this corpus? What's their relative probability?

Question 4: what’s $P(\text{have} \mid \text{John})$ vs. $P(\text{has} \mid \text{John})$ in this corpus?
Corpus 2

Am I right, or am I wrong?
Peter and I are seldom wrong.
I am sometimes right.
Sam and I are often mistaken.

Question 5: What two generalisations would a probabilistic language model (based on bigrams, say) infer from this data, which are not true of English as a whole? Are there any other generalisations that could be inferred?

Question 6: Try to think of some trigrams (and 4-grams, if you can) that cannot be ‘discovered’ by a bigram model? What you’re looking for here is a phrase where the third (or subsequent) word depends on the first word, which in a bigram model is ‘too far away’...
Some Observations

• Note that all the sentences in these corpora are well-formed.
• If, on the other hand, the corpus contains ill-formed input, then that too will skew our probability models ...

... and our translations will be affected!
Corpus 1 Revisited

• Using Google on 10th February 2003, I got:

 - # ‘have’ = 380,000,000
 - # ‘has’ = 244,000,000
 - # ‘John has’ = 227,000
 - # ‘John have’ = 25,700

• Revisit the Questions and calculate the actual probabilities! How accurate/inaccurate were the original models that we derived?
Corpus 2 Revisited

• Using Google on 10th February 2003, I got:
 • # ‘am I’ = 3,690,000
 • # ‘I am’ = 8,060,000
 • # ‘I are’ = 1,230,000

• Revisit the Questions and calculate the *actual* probabilities! How accurate/inaccurate were the original models that we derived?
Bilingual Corpora

All this applies to bitexts too!

Q: of what English word are these possible French translations (from the Canadian Hansards, note)?

<table>
<thead>
<tr>
<th>French</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>???</td>
<td>.808</td>
</tr>
<tr>
<td>entendre</td>
<td>.079</td>
</tr>
<tr>
<td>entendu</td>
<td>.026</td>
</tr>
<tr>
<td>intends</td>
<td>.024</td>
</tr>
<tr>
<td>entendons</td>
<td>.013</td>
</tr>
</tbody>
</table>
Caveat interpres!

• Beware of sparse data!
• Beware of unrepresentative corpora!
• Beware of poor quality language!

If the corpora are small, or of poor quality, or are unrepresentative, then our statistical language models will be poor, so any results we achieve will be poor.
Statistical Machine Translation (SMT)

Bilingual and Monolingual Data*

Translation Model

Language Model

Decoder:
choose t such that
$\arg\max P(t|s) = \arg\max P(t).P(s|t)$

*Assumed: large quantities of high-quality bilingual data aligned at sentence level

Thanks to Mary Hearne for some of these slides
Basic Probability

Consider that any source sentence s may translate into any target sentence t. It’s just that some translations are more likely than others. How do we formalise “more likely”?

$P(s)$: *a priori* probability

The chance/likelihood/probability that s happens. For example, if s is the English string “I like spiders”, then $P(s)$ is the likelihood that some person at some time will utter the sentence “I like spiders” as opposed to some other sentence.

$P(t|s)$: *conditional* probability

The chance/likelihood/probability that t happens *given that s has happened*. If s is again the English string “I like spiders” and t is the French string “Je m’appelle Andy” then $P(t|s)$ is the probability that, upon seeing sentence s, a translator will produce t.
Basic Probability

\(P(s,t) : \textit{joint probability} \)

The chance/likelihood/probability that \(s \) and \(t \) both happen.

If \(s \) and \(t \) don’t influence each other then we can say:

\[
P(s,t) = P(s) \times P(t)
\]

However, if \(s \) and \(t \) are mutual translations then this doesn’t hold, so we say:

\[
P(s,t) = P(s) \times P(t|s)
\]

In English: the chances of \(s \) and \(t \) both happening is equal to the chances of \(s \) happening anyway (independently of \(t \)) multiplied by the chances of \(t \) happening given that we’ve already seen \(s \).

All probabilities are between 0 and 1 inclusive.
A probability of 0.5 means “there’s half a chance”.

What’s the probability of throwing at least 7 using two dice?

What’s the probability of throwing at least 7 given that you’ve already thrown 6 on the first dice?
To represent the addition of integers from 1 to n:

\[\sum_{i=1}^{n} i \quad (= 1 + 2 + 3 + 4 + \ldots + n) \]

If everything being summed over is multiplied by a factor then this can be taken outside:

\[\sum_{i=1}^{n} i \times k = 1k + 2k + 3k + 4k + \ldots + nk = k \sum_{i=1}^{n} i \]

To represent the multiplication of integers from 1 to n:

\[\prod_{i=1}^{n} i \quad (= 1 \times 2 \times 3 \times 4 \times \ldots \times n) \]
Language Modelling

• A language model assigns a probability to every string in that language. We’ve done some of this already with our toy corpora.

• In practice, we gather a huge database of utterances and then calculate the relative frequencies of each.
We could use the Web ...

- We just count how many of each there are and give their relative frequency ...
- Problem 1: many (nearly all) strings will receive *no* probability as we haven’t seen them ...
- Problem 2: all unseen good and bad strings are deemed equally unlikely ...
- Solution? How do we know if a new utterance is valid or not? By breaking it down into substrings (‘constituents’?)
Language Modelling

• We’ve already dealt with substrings, or \(n \)-grams.

Hypothesis:
If a string has lots of reasonable/plausible/likely \(n \)-grams then it might be a reasonable sentence.

How do we measure plausibility, or ‘likelihood’?
n-grams

Suppose we have the phrase “x y” (i.e. word “x” followed by word “y”).

\[P(y|x) \text{ is the probability that word } y \text{ follows word } x \]

A commonly-used n-gram estimator:

\[
P(y|x) = \frac{\text{number-of-occurrences ("x y")}}{\text{number-of-occurrences ("x")}} \quad \text{Bigrams}
\]

Similarly, suppose we have the phrase “x y z”.

\[P(z|x y) \text{ is the probability that word } z \text{ follows words } x \text{ and } y \]

\[
P(z|x y) = \frac{\text{number-of-occurrences ("x y z")}}{\text{number-of-occurrences ("x y")}} \quad \text{Trigrams}
\]
Language Modelling

N-gram language models can assign non-zero probabilities to sentences they have never seen before:

\[
P(\text{"I don't like spiders that are poisonous"}) = P(\text{"I don't like"}) \times P(\text{"don't like spiders"}) \times P(\text{"like spiders that"}) \times P(\text{"spiders that are"}) \times P(\text{"that are poisonous"}) > 0 ?
\]

Trigrams …

\[
P(\text{"I don't like spiders that are poisonous"}) = P(\text{"I don't"}) \times P(\text{"don't like"}) \times P(\text{"like spiders"}) \times P(\text{"spiders that"}) \times P(\text{"that are"}) \times P(\text{"are poisonous"}) > 0 ?
\]

Bigrams …

Or even Unigrams, or more likely some weighted combination of all these
Language Modelling

Building n-gram models for larger values of n is often impractical due to the large numbers of parameters (or n-gram probabilities) which have to be estimated.

Suppose, for example, that we have a corpus containing 20,000 word types:

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>bigram</td>
<td>Approx. $20,000^2 = 400$ million</td>
</tr>
<tr>
<td>trigram</td>
<td>Approx. $20,000^3 = 8$ trillion</td>
</tr>
<tr>
<td>4-gram</td>
<td>Approx. $20,000^4 = 1.6 \times 10^{17}$</td>
</tr>
</tbody>
</table>

Ways of reducing the number of parameters:

- reduce the value of n
- stem the words (removing inflectional endings)
- group words into semantic classes
- condition on, for example, previous word + predicate

However, n-gram models are the simplest to work with.
Language Modelling

Building n-gram models for larger values of n is often impractical due to the large numbers of parameters (or n-gram probabilities) which have to be estimated.

Suppose, for example, that we have a corpus containing 20,000 word types:

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>bigram</td>
<td>Approx. $20,000^2 = 400$ million</td>
</tr>
<tr>
<td>trigram</td>
<td>Approx. $20,000^3 = 8$ trillion</td>
</tr>
<tr>
<td>4-gram</td>
<td>Approx. $20,000^4 = 1.6 \times 10^{17}$</td>
</tr>
</tbody>
</table>

Comparison (thanks to Chris Callison-Burch): the no. of milliseconds until the sun becomes a red giant and engulfs the Earth $\approx 1.6 \times 10^{20}$

Ways of reducing the number of parameters:

- reduce the value of n
- stem the words (removing inflectional endings)
- group words into semantic classes
- condition on, for example, previous word + predicate

However, n-gram models are the simplest to work with.
Statistical Machine Translation (SMT)

Bilingual and Monolingual Data

*Assumed: Large quantities of high-quality bilingual data aligned at sentence level

Translation Model

Language Model

Decoder:
choose t such that
$$\text{argmax } P(t|s) = \text{argmax } P(t).P(s|t)$$
The Translation Model

\[
\text{argmax } P(t|s) = \text{argmax } P(t) \cdot P(s|t)
\]

At its simplest:

the translation model needs to be able to take a bag of \(L_x\) words and a bag of \(L_y\) words and establish how likely it is that they correspond.

Or, in other words:

the translation model needs to be able to turn a bag of \(L_x\) words into a bag of \(L_y\) words and assign a score \(P(t|s)\) to the bag pair.
The Translation Model

SMT: \[\text{argmax } P(e|f) = \text{argmax } P(e) \cdot P(f|e) \]

Remember:

If we carry out, for example, French-to-English translation, then we will have:

- an English Language Model, and
- an English-to-French Translation Model.

When we see a French string \(f \), we want to reason backwards ... What English string \(e \) is:

- likely to be uttered?
- likely to then translate to \(f \)?

We are looking for the English string \(e \) that maximises \(P(e) \cdot P(f|e) \).
Word re-ordering in translation:

The language model establishes the probabilities of the possible orderings of a given bag of words, e.g.

\{have,programming,a,seen,never,I,language,better\}.

Effectively, the language model worries about word order, so that the translation model doesn’t have to... But what about a bag of words such as

\{loves,John,Mary\}?

Maybe the translation model *does* need to know a little about word order, after all...
The Translation Model

IBM Model 3

Translation as string re-writing:

John did not slap the green witch

John not slap slap slap the green witch

John no daba una botefada la verde bruja

John no daba una botefada a la verde bruja

John no daba una botefada a la bruja verde

The Translation Model

n: fertility parameters, e.g.
 n(1|house) = ?
 n(2|house) = ?
 n(3|house) = ?
 ...
i.e. what is the probability that “house” will produce exactly 1/2/3 French words whenever “house” appears?

 t: word-translation parameters, e.g.
 t(maison|house) = ?
 t(domicile|house) = ?
 t(amelioration|house) = ?
 ...
i.e. what is the probability that “house” will produce the French word maison/domicile/amelioration whenever “house” appears?
The Translation Model

d: distortion parameters, e.g.

\[d(2|2) = ? \]
\[d(3|2) = ? \]
\[d(5|2) = ? \]
\[... \]

i.e. what is the probability that the English word in position 2 of the English sentence will generate a French word that winds up in position 2/3/5... of a French translation?

p: We also have word-translation parameters corresponding to insertions:

\[p(à|NULL) = ? \]
\[p(de|NULL) = ? \]
\[p(pour|NULL) = ? \]
\[... \]

i.e. what is the probability that the French word à/de/pour is inserted into the French string?
Summary of Translation Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERTILITY</td>
<td>n</td>
<td>table plotting source words against fertilities</td>
</tr>
<tr>
<td>TRANSLATION</td>
<td>t</td>
<td>table plotting source words against target words</td>
</tr>
<tr>
<td>INSERTION</td>
<td>p</td>
<td>single number indicating the probability of insertion</td>
</tr>
<tr>
<td>DISTORTION</td>
<td>d</td>
<td>table plotting source string positions against target string positions</td>
</tr>
</tbody>
</table>
Summary of Translation Model Parameters

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERTILITY</td>
<td>n</td>
<td>Table plotting source words against fertilities</td>
</tr>
<tr>
<td>TRANSLATION</td>
<td>t</td>
<td>Table plotting source words against target words</td>
</tr>
<tr>
<td>INSERTION</td>
<td>p</td>
<td>Single number indicating the probability of insertion</td>
</tr>
<tr>
<td>DISTORTION</td>
<td>d</td>
<td>Table plotting source string positions against target</td>
</tr>
</tbody>
</table>

How can we automatically obtain parameter values t, n, d and p from data?
Via the EM Algorithm!
Phrasal Alignments in SMT

- Everything we’ve looked at so far assumes a set of word alignments.
- As speakers of foreign languages, we know that words don’t map one-to-one.
- It’d be better if we could map ‘phrases’, or sequences of words, and if need be probabilistically reorder them in translation ...
Advantages of Phrasal Alignments

• Many-to-many mappings can handle non-compositional phrases

• Local context is very useful for disambiguation:
 – Interest in \(\rightarrow \) ...
 – Interest rate \(\rightarrow \) ...

• The more data, the longer the learned phrases (whole sentences, sometimes ...)
Learning Phrasal Alignments

Here's a set of English→French Word Alignments

Thanks to Declan Groves for these …
Learning Phrasal Alignments

Here's a set of French→English Word Alignments

<table>
<thead>
<tr>
<th>impossible d’extraire une</th>
<th>liste ordonnée</th>
<th>des services</th>
</tr>
</thead>
<tbody>
<tr>
<td>could</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not</td>
<td></td>
<td></td>
</tr>
<tr>
<td>get</td>
<td></td>
<td></td>
</tr>
<tr>
<td>an</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ordered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>services</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning Phrasal Alignments

<table>
<thead>
<tr>
<th>impossible d’extrait une</th>
<th>liste ordonnée</th>
<th>des</th>
<th>services</th>
</tr>
</thead>
<tbody>
<tr>
<td>could</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>get</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ordered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>services</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We can take the Intersection of both sets of Word Alignments
Learning Phrasal Alignments

Taking contiguous blocks from the Intersection gives sets of highly confident phrasal Alignments
Learning Phrasal Alignments

And back off to the Union of both sets of Word Alignments
Learning Phrasal Alignments

We can also group together contiguous blocks from the Union to give us (less confident) sets of phrasal alignments.
Learning Phrasal Alignments

We can also group together contiguous blocks from the Union to give us (less confident) sets of phrasal alignments.
Learning Phrasal Alignments

<table>
<thead>
<tr>
<th>impossible d’extraire une</th>
<th>liste ordonnée</th>
<th>des</th>
<th>services</th>
</tr>
</thead>
<tbody>
<tr>
<td>could</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>get</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ordered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We can also group together contiguous blocks from the Union to give us (less confident) sets of phrasal alignments.
Learning Phrasal Alignments

We can also group together contiguous blocks from the Union to give us (less confident) sets of phrasal alignments.
Learning Phrasal Alignments

<table>
<thead>
<tr>
<th>impossible d’extraire une</th>
<th>liste ordonnée</th>
<th>des</th>
<th>services</th>
</tr>
</thead>
<tbody>
<tr>
<td>could</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>get</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ordered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>services</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We can also group together contiguous blocks from the Union to give us (less confident) sets of phrasal alignments.
Learning Phrasal Alignments

• We can learn as many phrase-to-phrase alignments as are consistent with the word alignments

• EM training and relative frequency can give us our phrase-pair probabilities

• One alternative is the joint phrase model [Marcu & Wang 02; Birch et al., 06]
Statistical Machine Translation (SMT)

Bilingual and Monolingual Data*

Translation Model

Language Model

Decoder:
choose t such that
\[\text{argmax } P(t|s) = \text{argmax } P(t).P(s|t) \]

*Assumed: large quantities of high-quality bilingual data aligned at sentence level
Decoding

- given input string s, choose the target string t that maximises $P(t|s)$

$$
\text{argmax } P(t|s) = \text{argmax } (P(t) \times P(s|t))
$$

Language Model

Translation Model
Decoding

- **Monotonic version:**
 - Substitute phrase by phrase, left to right
 - Word order can change within phrases, but phrases themselves don’t change order
 - Allows a dynamic programming solution (beam search)
 - Monotonic assumption not as damaging as you’d think (for Arabic/Chinese—English, about 3—4 BLEU points)

- **Non-monotonic version:**
 - Explore reordering of phrases themselves
Decoding Process

Maria no dio una botefada a la bruja verde

• Build translation left to right
 • Select foreign words to be translated

Thanks to Phillip Koehn for these …
Decoding Process

- Build translation left to right
 - Select foreign words to be translated
 - Find English phrase translation
 - Add English phrase to end of partial translation

Maria no dio una botefada a la bruja verde

Mary
Decoding Process

Maria no dio una botefada a la bruja verde

Mary

• Build translation left to right
 • Select foreign words to be translated
 • Find English phrase translation
 • Add English phrase to end of partial translation
 • Mark words as translated
Decoding Process

Maria no dio una botefada a la bruja verde

Mary did not

• One to many translation
Decoding Process

Maria no dio una botefada a la bruja verde

Mary did not slap

• Many to one translation
Decoding Process

Maria no dio una botefada a la bruja verde

Mary did not slap the

• Many to one translation
Decoding Process

Maria no dio una botefada a la bruja verde

Mary did not slap the green

• Reordering
Decoding Process

Maria no dio una botefada a la bruja verde

Mary did not slap the green witch

•Translation finished
Translation Options

Maria no dio una botefada a la bruja verde

Mary did not give a slap to the witch green

• Look up possible phrase translations
 • Many different ways to segment words into phrases
 • Many different ways to translate each phrase
Hypothesis Expansion

•Start with empty hypothesis
 •e: no English words
 •f: no foreign words covered
 •p: probability 1
Hypothesis Expansion

Maria no dio una botefada a la bruja verde
Mary not give a slap to the witch green

• Pick translation option
 e: Mary
 f: *--------
 p: .534

• Create hypothesis
 • e: add English phrase ‘Mary’
 • f: first foreign word covered
 • p: probability .534
Hypothesis Expansion

Maria no dio una botefada a la bruja verde
Mary did not give a slap to the witch green

• Add another hypothesis

<table>
<thead>
<tr>
<th>e:</th>
<th>f:</th>
<th>p:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>*</td>
<td>.534</td>
</tr>
<tr>
<td>witch</td>
<td>--</td>
<td>.182</td>
</tr>
</tbody>
</table>
Hypothesis Expansion

- ... until all foreign words covered.
- Find best hypothesis that covers all foreign words
- Backtrack to read off translation
- Problem: Adding more hypotheses causes search space to explode—decoding is NP-complete [Knight 99]
- Solutions:
 - Hypothesis recombination: different paths lead to the same partial translation—risk free!
 - Threshold pruning—risky! (integrated with future cost estimation ...)
- Run Pharaoh (or Moses) with the trace on (‘-t’ switch)
Decoding is a Complex Process!

Phrase-Based Translation

| 这 7人 | 中包括 来自 法国 和 俄罗斯 的 宇航 员 . |
|---|---|---|---|---|---|
| the 7 people | including by some and the russian the astronauts |
| it 7 people included | by france and the russian international astronomical of rapporteur |
| these 7 among including from the french and the russian the fifth |
| persons 7 including from the french and the russian of space members |
| that 7 includes from the international of france and to russian of the |
| include 7 from the of france and of russian |
| populations 7 include from france and russian of the |
| include those from france and the russian |
| phillip | including those from france and the russian |
| include representatives from france and russian by the |
| include from france and russia’s |
| includes coming from french and russia’s |
| french and russian |
| french and russia |
| includes from france and russia |
| and russia |
| and russia |
| and russian |
| and russia |
| or russia |

Table 1: #11# the seven-member crew includes astronauts from france and russia.

Scoring: Try to use phrase pairs that have been frequently observed. Try to output a sentence with frequent English word sequences.

Thanks to Kevin Knight
MT Evaluation

- Source only!
- Manual:
 - Subjective Sentence Error Rates
 - Correct/Incorrect
 - Error categorization
- Objective Usage Testing

- Automatic:
 - Exact Match (SER), WER, BLEU, NIST, GTM, Meteor etc.
Automatic Machine Translation Evaluation

• Objective
• Inspired by the Word Error Rate metric used by ASR research
• Measuring the “closeness” between the MT hypothesis and human reference translations
 – Precision: n-gram precision
 – Recall:
 • Against the best matched reference
 • Approximated by brevity penalty
• Cheap, fast
• Highly correlated with human evaluations
• MT research has greatly benefited from automatic evaluations
• Typical metrics: BLEU, NIST, F-Score, Meteor, TER
BLEU Evaluation Metric

Reference (human) translation:
The US island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself Osama Bin Laden and threatening a biological/chemical attack against the airport.

Machine translation:
The American [?] International airport and its the office a [?] receives one calls self the sand Arab rich business [?] and so on electronic mail, which sends out; The threat will be able after the maintenance at the airport.

• N-gram precision (score between 0 & 1)
 • what % of machine n-grams (a sequence of words) can be found in the reference translation?

• Brevity Penalty
 • Can’t just type out single word “the” (precision 1.0!)

NB, Extremely hard to trick the system, i.e. find a way to change MT output so that BLEU score increases, but quality doesn’t.
The US island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself Osama Bin Laden and threatening a biological/chemical attack against the airport.

Guam International Airport and its offices are maintaining a high state of alert after receiving an e-mail that was from a person claiming to be the rich Saudi Arabian businessman Osama Bin Laden and that threatened to launch a biological and chemical attack on the airport.

The US International Airport of Guam and its office has received an email from a self-claimed Arabian millionaire named Laden, which threatens to launch a biochemical attack on airport. Guam authority has been on alert.

US Guam International Airport and its offices received an email from Mr. Bin Laden and other rich businessmen from Saudi Arabia. They said there would be biochemistry air raid to Guam Airport. Guam needs to be in high precaution about this matter.
Reference Translation: the gunman was shot to death by the police.

The gunman was shot kill.
Wounded police jaya of
The gunman was shot dead by the police.
The gunman arrested by police kill.
The gunmen were killed.
The gunman was shot to death by the police.
The ringer is killed by the police.
Police killed the gunman.

Green = 4-gram match (good!) Red = unmatched word (bad!)
BLEU in Theory

• Proposed by IBM’s SMT group (Papineni et al, ACL-2002)
• Widely used in MT evaluations
 – DARPA TIDES MT evaluation (www.darpa.mil/ipto/programs/tides/strategy.htm)
 – IWSLT evaluation (www.slt.atr.co.jp/IWSLT2004/)
 – TC-Star (www.tc-star.org/)
• BLEU Metric:
 \[
 \text{BLEU} = BP \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)
 \]
 – \(P_n \): Modified n-gram precision
 – Geometric mean of \(p_1, p_2, \ldots, p_n \)
 – \(BP \): Brevity penalty (\(c \)=length of MT hypothesis, \(r \)=length of reference)
 \[
 BP = \begin{cases}
 1 & \text{if } c > r \\
 e^{\left(1 - \frac{r}{c}\right)} & \text{if } c \leq r
 \end{cases}
 \]
 – Usually, \(N=4 \) and \(w_n = 1/N \).
BLEU in Practice

MT Hypothesis: *the gunman was shot dead by police.*
- Ref 1: The gunman was shot to death by the police.
- Ref 2: The gunman was shot to death by the police.
- Ref 3: Police killed the gunman.
- Ref 4: The gunman was shot dead by the police.

- Precision: $p_1=1.0(8/8)$ $p_2=0.86(6/7)$ $p_3=0.67(4/6)$ $p_4=0.6$ (3/5)
- Brevity Penalty: $c=8$, $r=9$, $BP=0.8825$
- Final Score: $\sqrt[4]{1 \times 0.86 \times 0.67 \times 0.6 \times 0.8825} = 0.68$
Sample BLEU Performance

Reference: George Bush will often take a holiday in Crawford Texas

1. George Bush will often take a holiday in Crawford Texas (1.000)
2. Bush will often holiday in Texas (0.4611)
3. Bush will often holiday in Crawford Texas (0.6363)
4. George Bush will often holiday in Crawford Texas (0.7490)
5. George Bush will not often vacation in Texas (0.4491)
6. George Bush will not often take a holiday in Crawford Texas (0.9129)
Content of ‘gold standard’ matters!

Which is better?

1. George Bush often takes a holiday in Crawford Texas
2. Holiday often Bush a takes George in Crawford Texas

What would BLEU say (assume max. bigrams important)?

What if human reference was:
The President frequently makes his vacation in Crawford Texas.

Which is better now?
Content of ‘gold standard’ matters! (2)

Sometimes, the reference translation is impossible for any MT system (current or future) to match:

From Canadian Hansards:
Again, this was voted down by the Liberal majority =>
Malheureusement, encore une fois, la majorité libérale l’a rejeté
[Unfortunately, still one time, the majority liberal it has rejected]

Of course, human translators are quite entitled to do this sort of thing, and do so all the time ...
Correlation between BLEU score and Training Set Size?

Experiments by Philipp Koehn

BLEU score

No. sentence pairs used in training

Finnish-English
German-English
French-English
Swedish-English
Problems with BLEU

1. It can be easy to look good (cf. output from current ‘state-of-the-art’ SMT systems)
2. Not currently very sensitive to global syntactic structure (disputable)
3. Doesn’t care about nature of untranslated words:
 • gave it to Bush
 • gave it at Bush
 • gave it to rhododendron
4. As MT improves (?!), BLEU won’t be ‘good enough’
Problems with *using* BLEU

- Not designed to test individual sentences
- Not meant to compare different MT systems

Extremely useful tool for system developers!

Q: what/who is evaluation for?

cf. [Callison-Burch et al., *EACL-06*]
Newer Evaluation Metrics

• P&R (GTM: Turian et al., *MT-Summit* 03)
• RED (Akiba et al., *MT-Summit* 01) [based on edit distance, cf. WER/PER ...]
• ORANGE (Lin & Och *COLING*-04)
• Classification by Learning (Kulesza & Shieber *TMI*-04)
• Meteor (Banerjee & Lavie, *ACL*-05)
• TER (Snover et al., *AMTA*-06)
Other Places to Look

- BLEU/NIST:
 www.nist.gov/speech/tests/mt/resources/scoring.htm
- GTM: nlp.cs.nyu.edu/GTM/
- EAGLES: www.issco.unige.ch/ewg95/ewg95.html
- FEMTI: www.isi.edu/natural-language/mteval/
- MT Summit/LREC workshops etc etc ...

=> MT Evaluation is (one of) the flavour(s) of the month ...
Is MT-Eval for people who can’t do MT?

• I used to say so (somewhat mischievously), but some groups that have come up with MT-Eval metrics include:
 – Aachen (Ney)
 – Google (Och)
 – CMU (Lavie, Vogel)
 – NYU (Melamed)
 – Edinburgh (Koehn)
 – Maryland (Dorr)
Is MT-Eval for people who can’t do MT?

• I used to say so (somewhat mischievously), but some groups that have come up with MT-Eval metrics include:
 – Aachen (Ney)
 – Google (Och)
 – CMU (Lavie, Vogel)
 – NYU (Melamed)
 – Edinburgh (Koehn)
 – Maryland (Dorr)
 – DCU (Way)
End of Part 1

... But I hope that’s enough to get you started/interested in SMT...

Thanks ... and over to Hany!
SMT Tutorial – Part2

Andy Way
DCU

Hany Hassan
IBM
Outline

• Phrase-based SMT
 – Log-Linear models & parameters estimation
 – Re-ordering techniques
 – Factored Translation Model

• Advanced Topics:
 – Direct Translation Model
 – Syntax support for SMT

• How to start building your own SMT system?
Phrase-based SMT
Log-Linear Model

- IBM Models deploys three components:
 - Translation model, Language Model and Distortion model

\[P_{tm} \cdot P_{lm} \cdot P_{dist} \]

- This can be represented as weighted components:

\[P_{tm}^{\lambda_1} \cdot P_{lm}^{\lambda_2} \cdot P_{dist}^{\lambda_3} \]

- Motivated by the need to add new components:

\[\log \prod_i P_i = \sum_i \lambda_i \log P_i \]
Log-Linear model components /features

- Many different knowledge sources useful
 - Phrase translation model
 - Word translation model
 - Reordering (distortion) model
 - Word drop feature
 - Language models
 - Additional linguistics features (i.e. POS)
 - Any feature you can think could be useful
State of-the-art Features

- Source-Target phrase translation
- Target-Source phrase translation
- Source-Target word translation
- Target-Source word translation
- Distortion model
- N-gram Language Model
- Word/phrase deletion penalty
Log-linear models overview

\[
\log \prod_i P_i = \sum_i \lambda_i \log P_i \quad \Rightarrow \quad P = \exp(\sum_i \lambda_i \log P_i)
\]

Log-linear Models

Maximum Entropy Models

- Log-linear models
 - Heuristic (less optimal) estimation
 - Few number of features (\(< 10\))
 - Computationally inexpensive

- Optimal estimation approaches
 - Very large number of features (millions)
 - Computationally expensive

Phrase-based SMT was in early development stages
Researchers opted for computationally affordable solution
Still long way to go at that time
Log-linear Model Estimation

- Minimum Error Rate Training (MERT)

 - Generate n-best translations
 - Score n-best translations vs. a reverence
 - Assign feature weights to move up good translations
 - Change model parameters and iterate
Log-Linear models

• Pros:
 – Proved success and dominated Phrase-based SMT for years
 – Easy to estimate
 – Available open source tools for estimation

• Cons:
 – No optimal estimation
 – Handle few number of features (in the order of ten)
 – Feature weights assigned to the whole feature at once
 – No inter-dependency between features instances
Outline

• Phrase-based SMT
 – Log-Linear models & parameters estimation
 – Re-ordering techniques
 – Factored Translation Model

• Advanced Topics:
 – Discriminative SMT models
 – Syntax support for SMT

• How to start building your own SMT system?
Re-ordering for Phrase-based SMT
Re-ordering

Monotone → met minister officials economic saudi

Re-ordering → Minister met saudi economic officials
Monotone translation with pre-processing

Reorder source to match target

Monotone Decoding

Minister met Saudi economic officials
Linear re-ordering

- Model the movement distance
- Independent of the words, phrases and the context
- A weak re-ordering model
- Penalize long movements
Linear Re-ordering for Phrase-based SMT
Lexicalized re-ordering

Three orientation types: monotone, swap, discontinuous
• Probability $p(\text{swap}|e, f)$ depends on foreign (and English) phrase involved
More re-ordering techniques

- POS based re-ordering
- Syntax based re-ordering
- etc.

Lexical Reordering is doing a good job
n-gram language models limits the reordering capabilities
Seeking better language modeling techniques to pick the best re-ordering
Syntax-based language models?
Outline:

• Phrase-based SMT
 – Log-Linear models & parameters estimation
 – Re-ordering techniques
 – Factored Translation Model

• Advanced Topics:
 – Discriminative SMT models
 – Syntax support for SMT

• How to start building your own SMT system?
Factored Translation Model

- Factored Translation Models
 - Factored representation of words
 - surface
 - stem
 - part-of-speech
 - morphology
 - word class

- Generalization, e.g. by translating stems, not surface forms
- Additional information within model (using syntax for reordering, language modeling)
Factored Translation Model

Decomposing Translation: Example

- **Translating** stem and syntactic information *separately*

 \[
 \begin{array}{c}
 \text{stem} \\
 \text{part-of-speech} \\
 \text{morphology}
 \end{array} \quad \Rightarrow \quad \begin{array}{c}
 \text{stem} \\
 \text{part-of-speech} \\
 \text{morphology}
 \end{array}
 \]

- **Generate surface** form on target side

 \[
 \begin{array}{c}
 \text{surface} \\
 \uparrow \\
 \text{stem} \\
 \text{part-of-speech} \\
 \text{morphology}
 \end{array}
 \]
Factored Translation

• Pros:
 – Provides a framework to deploy various knowledge sources
 – Implemented in Moses framework

• Cons:
 – Few number of features (<10)
 – No adequate estimation and modeling
 – Not correlating various features
 – Redundant and overlapping features
Outline

• Phrase-based SMT
 – Log-Linear models & parameters estimation
 – Re-ordering techniques
 – Factored Translation Model

• Advanced Topics:
 – Direct Translation Model
 – Syntax support for SMT

• How to start building your own SMT system?
Direct Translation Model

• Why?
 – Provides a framework to deploy various knowledge sources
 – Easy to understand classification approach
 – Very large number of features
 – estimation and modeling
 – Automatically correlating various features
 – Minimal no redundant phrase table
A Classification Viewpoint

• Machine Translation can be viewed as a sequence of tagging decisions

• Classifier
 – MaxEnt
 – ...

• Required:
 – History (Flip of a coin, classifiable action)
 – Futures (An outcome)

• Nice to have:
 – Relevant Features
Log-linear models overview

\[\log \prod_i P_i = \sum_i \lambda_i \log P_i \quad \implies \quad P = \exp(\sum_i \lambda_i \log P_i) \]

Log-linear Models

Maximum Entropy Models

- Log-linear models
 - Heuristic (less optimal) estimation
 - Few number of features (\(< 10\))
 - Computationally inexpensive

- Maxent models
 - Optimal estimation approaches
 - Very large number of features (millions)
 - Computationally expensive

Phrase-based SMT is more mature now
Researchers started to hit the upper limits of the log linear models capabilities
Computational power increases remarkably
DTM

- The model:

\[
p(t_i, j \mid t_{i-2}, s_{a_i+1}) = \frac{1}{Z} P_0 e^{\sum_i \lambda_i \phi(t_i, j, t_{i-}, s_{a_i+1})}
\]
DTM: Generation Story

• Given a source sequence,
 1. Choose a source position
 2. Choose a translation string
 3. Mark source position as covered
 4. Iterate from step 1, till all positions are covered

Not much different from a phrase based decoder…
DTM Features

- Features Types
 - Lexical
 - Segmentation
 - Lexical Context
 - Part of speech
 - Coverage
 - ...

Minimal Phrase Table with Hierarchical Structures

<table>
<thead>
<tr>
<th>Flat phrases</th>
<th>Saudi economic officials (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Redundancy</td>
<td>Saudi economic officials (11)</td>
</tr>
<tr>
<td>Large Space</td>
<td>Saudi political officials (8)</td>
</tr>
<tr>
<td>Hierarchical Phrases</td>
<td>Saudi economic officials (7)</td>
</tr>
<tr>
<td>Minimal Phrase table</td>
<td>official in X في مسئول X</td>
</tr>
<tr>
<td>Minimal redundancy</td>
<td>Saudi X official X سعودي X</td>
</tr>
<tr>
<td></td>
<td>meets Saudi X سعودي X</td>
</tr>
</tbody>
</table>
Outline

• Phrase-based SMT
 – Log-Linear models & parameters estimation
 – Re-ordering techniques
 – Factored Translation Model

• Advanced Topics:
 – Discriminative SMT models
 – Syntax support for SMT

• How to start building your own SMT system?
Why syntax

- Syntax can help Phrase-based SMT in:
 - Producing more fluent translation
 - Syntax-aware re-ordering

Source: Bogota 12-4 (AFP) - An Agence France-Presse correspondent reported that Cali cartel boss (south-west) Gilberto Rodriguez Orejuela, one of the biggest drug traffickers in the world, was handed over to the United States on Friday evening.

Baseline: Bogota 4-12 (afp) - according to an Agence France Presse correspondent that cali cartel leader (southwest), Gilberto Rodriguez Orejuela, one of the biggest drug traffickers in the world, surrendered Friday night to the United States.
Can linguistic syntax improve PBSMT?

- Early work tried to impose syntactic constituents on phrase extraction with no success
- Hierarchical Phrase structure
 - Allows for hierarchical phrases
 - Handles a range of reordering problems
 - The syntax induced is not linguistically motivated.
- Syntactified target phrases
 - Induces millions of xRs rules from parallel corpus
 - Mismatch between constituent (xRs) and phrase
 - Subtrees for phrases: leads to spurious ambiguity in phrase table
- Do subtrees/constituents fit well with phrases?
Subtrees mismatch phrases

The president meets Saudi economic officials

يستقبل الرئيس اقتصاديين مسؤولين سعوديين
Redundancy

The president meets Saudi economical officials in Riad next week.
Lexical Syntax
Supertagged Phrase-based SMT

Unsmoothed Supertagged System
“almost” parsing for SMT

- Phrases with supertags information
- Translation models to handle both lexical and supertagged phrases
- Lexical language model
- Supertagged /Syntactic language model
- Very efficient linear decoding
- Very good improvement
Incremental dependency parsing using lexical syntax

\[
P(W, S) = \prod_{i=1}^{n} P(w_i | W_{i-1}S_{i-1}) \cdot P(st_i | W_i) \cdot P(o_i | W_i, S_{i-1}, ST_i)
\]
Incremental CCG

\[
\begin{align*}
S_1 &: \text{NP} \ (S/\text{NP})/\text{NP} \\
S_2 &: \text{S/\text{NP}} \\
S_3 &: \text{S} \rightarrow \text{FA} \\
S_4 &: \text{S/\text{NP}} \rightarrow \text{COORD} \\
S_5 &: \text{S} \rightarrow \text{FA}
\end{align*}
\]
Syntax effect

Source: وَخَضِعَ بعْدَ ذَلِكَ لِفَحُوصَاتِ اِجِراَهَهَا اِحْدَ أَطْبَاءِ الْشَرْطَةِ
Reference: He then underwent medical examinations by a police doctor
Baseline: He was subjected after that tests conducted by doctors of the police
DDTM: Then he underwent tests conducted by doctors of the police.

Source: وَقَدْ هُزَّ الْرِّيَاضُ مَسَاءَ الْيَوْمِ هِجْوَمَانَ بِبَيْنَتَيْنِ مَفْخَخَتَيْنَ
Reference: Riyadh was rocked tonight by two car bomb attacks.
Baseline: Riyadh rocked today night attacks by two booby-trapped car
DDTM: Attacks rocked Riyadh today evening in two car bombs.
Where to go from here?

- Open source frameworks
 - Word based aligner: Giza++
 - Open source phrase-based system training and decoding: Moses
 - Language Model tools: SRILM
 - Syntax-based SMT system: SAMT
- Parallel Data
 - LDC data (Arabic, English, Chinese, etc)
 - Europal data (European Languages)
- Monolingual data
 - LDC data
 - Google web n-gram data
- Pre-processing tools
 - OpenNLP, CADIM, AMIRA, ..
- Parsers
 - Bikel’s parser, CCG parser, etc