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ing me the opportunity to have an internship under his supervision in the Language

Technologies Lab at the National Institute of Astrophysics, Optics and Electronics

(INAOE) in Puebla, Mexico. I had pleasure learning about all the ideas they are

exploring and was thrilled to investigate the compatibility of some of these ideas with

the Arabic language. I have furthermore to thank Dr. Luis Villaseñor Pineda for

the precious time and interest that he had dedicated to my research work.

Also Dr. Vasudeva Varma from the International Institute of Information Tech-

nology at Hyderabad. I want to thank him and his Ph.D students for making my

stay in India comfortable and for having generously shared a lot of information about

their research works and their scientific feedback on ours.

I also thank my colleagues, the nearly Dr., Davide Buscaldi and, the already Dr.,

David Pinto for tutoring me at the beginning of my PhD career and for all the

discussions that we had at lunch and coffee breaks. Piedachu Peris Garćıa for
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Abstract

This Ph.D. thesis describes the investigations we carried out in order to deter-

mine the appropriate approach to build an efficient and robust Arabic Named Entity

Recognition system. Such a system would have the ability to identify and classify the

Named Entities within an open-domain Arabic text.

The Named Entity Recognition (NER) task helps other Natural Language Processing

approaches (e.g. Information Retrieval, Question Answering, Machine Translation,

etc.) achieve a higher performance thanks to the significant information added to the

text. In the literature, many research works report the adequate approaches which

can be used to build an NER system for a specific language or from a language-

independent perspective. Yet, very few research works which investigate the task for

the Arabic language have been published.

The Arabic language has a special orthography and a complex morphology which

bring new challenges to the NER task to be investigated. A complete investigation of

Arabic NER would report the technique which helps achieve a high performance, as

well as giving a detailed error analysis and results discussion so as to make the study

beneficial to the research community. This thesis work aims at satisfying this specific

need. In order to achieve that goal we have:

1. Studied the different aspects of the Arabic language which are related to the

NER task;

2. Studied the state-of-art of the NER task;

3. Conducted a comparative study among the most successful Machine Learning

approaches on the NER task;

4. Carried out a multi-classifier approach where each classifier deals with only one

NE class and uses the appropriate Machine Learning approach and feature-set

for the concerned class.

v
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We have evaluated our experiments on different nine data-sets of different genres

(newswire, broadcast news, Arabic Treebank and weblogs). Our findings point out

that the multi-classifier yields the best results.
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Resumen

En esta tesis doctoral se describen las investigaciones realizadas con el objetivo de de-

terminar las mejores técnicas para construir un Reconocedor de Entidades Nombradas

en Árabe. Tal sistema tendŕıa la habilidad de identificar y clasificar las entidades

nombradas que se encuentran en un texto árabe de dominio abierto.

La tarea de Reconocimiento de Entidades Nombradas (REN) ayuda a otras tareas de

Procesamiento del Lenguaje Natural (por ejemplo, la Recuperación de Información, la

Búsqueda de Respuestas, la Traducción Automática, etc.) a lograr mejores resultados

gracias al enriquecimiento que añade al texto. En la literatura existen diversos traba-

jos que investigan la tarea de REN para un idioma espećıfico o desde una perspectiva

independiente del lenguaje. Sin embargo, hasta el momento, se han publicado muy

pocos trabajos que estudien dicha tarea para el árabe.

El árabe tiene una ortograf́ıa especial y una morfoloǵıa compleja, estos aspectos apor-

tan nuevos desaf́ıos para la investigación en la tarea de REN. Una investigación com-

pleta del REN para el árabe no solo aportaŕıa las técnicas necesarias para conseguir

un alto rendimiento, sino que también proporcionaŕıa un análisis de los errores y una

discusión sobre los resultados que benefician a la comunidad de investigadores del

REN. El objetivo principal de esta tesis es satisfacer esa necesidad. Para ello hemos:

1. Elaborado un estudio de los diferentes aspectos del árabe relacionados con dicha

tarea;

2. Analizado el estado del arte del REN;

3. Llevado a cabo una comparativa de los resultados obtenidos por diferentes

técnicas de aprendizaje automático;

4. Desarrollado un método basado en la combinación de diferentes clasificadores,

donde cada clasificador trata con una sola clase de entidades nombradas y em-

plea el conjunto de caracteŕısticas y la técnica de aprendizaje automático más

adecuados para la clase de entidades nombradas en cuestión.
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Nuestros experimentos han sido evaluados sobre nueve conjuntos de test de diferentes

tipos (art́ıculos de periódico, noticias transcritas, documentos del Arabic Treebank y

weblogs). Nuestros resultados muestran que la técnica basada en varios clasificadores

ayuda a obtener los mejores resultados en todos estos tipos de documentos.
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Resum

En aquesta tesi doctoral es descriuen les investigacions realitzades amb l’objectiu de

determinar les millors técniques per a construir un Reconeixedor d’Entitats Nome-

nades en Árab. Tal sistema tindria l’habilitat d’identificar i classificar les entitats

nomenades que es troben en un text árab de domini qualsevol.

La tasca de Reconeixement d’Entitats Nomenades (REN) ajuda a altres tasques de

Processament del Llenguatge Natural (per exemple, Recuperació d’Informació Re-

cerca de Respostes, Traducció Automática, etc.) a assolir millors resultats grácies

a l’enriquiment que afegeix al text. En la literatura existeixen diversos treballs que

investiguen la tasca de REN per a un idioma espećıfic o des d’una perspectiva inde-

pendiente del llenguatge. No obstant aixó, fins al moment, s’han publicat molt pocs

treballs que investiguen aquesta tasca per a l’árab.

L’árab té una ortografia especial i una morfologia complexa que aporten nous desafi-

aments per a investigar en la tasca de REN. Una investigació completa del REN per

a l’árab aportaria la técnica necessária per a aconseguir un alt rendiment, ó també

proporcionaria una análisi dels errors i una discussió sobre els resultats, per a ben-

eficiar amb tal estudi a la comunitat d’investigadors del REN. L’objectiu principal

d’aquesta tesi és satisfer aqueixa necessitat. Per a aixó hem:

1. Elaborat un estudi dels diferents aspectes de l’árab relacionats amb aquesta

tasca;

2. Analitzat l’estat de l’art del REN;

3. Portat a terme una comparativa dels resultats obtinguts per diferents técniques

d’aprenentatge automátic;

4. Desenvolupat un métode basat en la combinació de diferents classificadors, on

cada classificador tracta amb una sola classe d’entitats nomenades i empra el

conjunt de caracteŕıstiques i la técnica d’aprenentatge automátic més adequats

per a la classe d’entitats nomenades en qestió.
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Els nostres experiments han estat avaluats sobre nou conjunts de test de diferents

tipus (articles de diari, not́ıcies transcrites, documents del Arabic Treebank i weblogs).

Els nostres resultats mostren que la técnica basada en diversos classificadors ajuda a

obtenir els millors resultats en tots els tipus de dades.
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Chapter 1

Introduction

The Named Entity Recognition (NER) task consists of identifying and classifying

the Named Entities (NEs) within an open domain text. For instance, let us consider

the following sentence:

Human Rights Watch accuses in a report the army and police in Nigeria of

executing more than 90 people.

An accurate NER system would extract two NEs: (i) “Human Rights Watch” as an

organization; and (ii) “Nigeria” as a location.

Some Natural Language Processing (NLP) applications might use the output of the

NER system to enhance their performance because it is much richer in information

than the raw text. For instance, if we consider an application which attempts to

translate the sentence which we have given in the previous example into Arabic, the

translation of “Human Rights Watch” without considering that it is the name of an

organization would be “ 	
àA

�
�

	
�B

�
@

�
�ñ

�
®k

�
éJ.

�
¯ @ �QÓ” (in Buckwalter tranliteration1 “mrAqbp

Hqwq AlAnsan”), whereas the real translation is a character-based transliteration of

the words which sounds like English when read in Arabic, i.e. “ �
�

�
�@

�
ð �

�
�K
@ �P 	áÓñJ
ë”

(“hywmn rAyts wAt$”). Other examples are abound which show that NEs need to

be handled differently for a good translation. Question Answering (QA) is a task

which aims at giving an accurate answer to a precise question given by the user in

1http://www.qamus.org/transliteration.htm

3



Chapter 1: Introduction 4

natural language. In this task the type of questions which rely the most on the usage

of an NER system to process both the question and document-set are called “factoid

questions”. These questions ask information about the name of a specific person,

location, etc. or a date, e.g. “What is the capital city of the region of Liguria?”.

After identifying and classifying the NEs in the document-set, the QA system would

only consider NEs which were classified as location potential answers. Following, it

would proceed to extract the correct answer which is “Genova” (in Chapter 3 we

explain with more details how NER helps to improve the performance of other NLP

tasks)

For this reason, the investigation of novel approaches which help obtain efficient and

accurate NER systems for the English language has been strongly encouraged. Proof

is abound in the literature and the reported results by the evaluation campaigns which

have been organized for this purpose, e.g. the 6th Message Understanding Conference

(MUC-6) and Conference on Computational Natural Language Learning (CoNLL).

Nevertheless, very few published research works have attempted to investigate which

approaches are adequate for other languages such as Arabic. In this document, we

present a large experiment-set which attempts to tackle the Arabic NER problem and

we provide all of the necessary details about our experiments and their results.

1.0.1 Arabic Named Entity Recognition Challenges

The Arabic language has some peculiarities which harden the NER task. It has

a rich and complex morphology which hardens the NER task significantly. To our

knowledge, no published work has shown exactly the error rate induced by the ag-

glutinative characteristic of the Arabic language. Moreover, no published works have

attempted to use the rich morphology of the Arabic language so as to enhance the

Arabic NER. In order to tackle these problems we have a number of research ques-

tions which would need to be answered to be able achieve a set of empirical proofs.

These research questions are as follows:

1. Describe with details the peculiarities of the Arabic language and show how

they exactly harden the Arabic NER;
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2. Give empirical results which show the error rate induced by the morphology

complexity of the Arabic language and the lack of capitalization;

3. Explore the possibility of using morphological charactersitics of an Arabic word

to help the NER system better determine and classify the NEs within an Arabic

text

4. Explore a large feature-set for Arabic NER. Our investigation here should aim

also at reporting the impact obtained from each feature. Thereafter, we would

investigate the best feature-set which helps to obtain high performance. Also,

we would investigate if these features have the same impact, in terms of F-

measure, on the different NE classes and a multi-classifier approach where each

classifier uses an optimized feature-set for the concerned class.

5. In the literature, the comparison studies which have been carried out to deter-

mine the best supervised Machine Learning (ML) technique to be used for the

NER task report very shallow results and do not show why exactly one ML

approach should be used rather than another. In our research study, we want

to conduct our own comparative study which would aim at deeper comparisons

and would help decide the appropriate ML approach for the Arabic NER task.

Explore whether or not the different ML approaches yield to comparable results

for the different classes. Similarly to the features study, we want to investigate

the possibility of building a multi-classifier approach where each classifier con-

cerns only one NE class and uses the ML approach which helps to yield the best

result for the concerned class.

6. Since the NER task has been more investigated for the English language than

for other languages, we want also to attempt importing knowledge about NEs

from English to Arabic.
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1.0.2 Thesis Overview

Chapter 2 gives a full description of the different aspects of Arabic which are

concerned by most of the NLP tasks. This chapter situates the Arabic language lin-

guistically, i.e., it provides information about its origin and its speakers, it gives a

description of its orthography and morphology, and at last it emphasizes the pecu-

liarities which have proved to “hurt” the performance of most of the NLP tasks.

Chapter 3 is the NER task state-of-art chapter, i.e., it gives the necessary background

which would help later to situate our research work in the NER research community.

It starts by showing the different NER official definitions and emphasizes the differ-

ences among them. Thereafter, it describes the techniques which have been used by

the most successful NER systems. Those systems have either achieved very good per-

formance in official competitions or have achieved the state-of-art for the concerned

language. Finally, we focus on the Arabic NER published works.

Chapter 4 is dedicated to remind the theory behind each of the ML approaches

which have proved to be efficient for the NER task, namely Maximum Entropy (ME),

Support Vector Machines (SVMs) and Conditional Random Fields (CRFs). After a

description of the theory, we give an overview of the different research studies which

have shown that those approaches are appropriate solutions. We also report some of

the NER research works which give further proofs on the efficiency of the mentioned

ML approaches. However, the deep insights of these works are given in Chapter 3.

In Chapter 5 we describe our first attempt to build an Arabic NER system. It con-

sists of an ME-based approach which uses a reduced feature-set and two different

techniques. The first one uses a 1-step approach which consists of exploring the per-

formance that might be obtained by using an ME-approach and gives an idea about

the impact of using external resources (i.e., gazetteers). The second one, uses a 2-step

approach. In the first step it marks the boundaries of the NEs within the text. The

second step classifies those mentions. Finally, we compare the results obtained for

both experiment-sets and we give a further error-analysis.

Chapter 6 shows a comparative study which we have conducted among ME, SVMs

and CRFs. In this research work, we have employed a large feature-set which covers
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lexical, syntactical and morphological features. In order to carry out a solid study

of these features and a deep comparison among the ML approaches which we have

mentioned, we have conducted a large experiment-set which shows the impact of each

feature with each of the ML approaches on the performance. Thereafter, we have per-

formed an incremental feature selection technique to determine the best feature-set

for each ML approach. We have evaluated our experiments on nine different data-sets

of different genres (Newswire, Broadcast News, Weblogs, Arabic Treebank).

We also present, in this chapter, a detailed error-analysis which emphasizes the be-

havior difference amongst the different ML approaches.

Chapter 7 presents a research study which uses a different classifier for each class.

Each of these classifiers uses the appropriate ML approach and an optimized feature-

set for the concerned class. The final module combines the outcomes of these classifiers

in one single output. We report the impact of each feature on each class and describe

how we have optimized the feature-sets as well as give a detailed insight of the final

results and error-analysis.

Chapter 8 describes a research work which has been carried out during a six-month

internship of the candidate at the IBM T. J. Watson Research Center. In this work,

the possibility of importing knowledge about NEs from another language (English in

our case) has been investigated. In order to do so, an approach which employs a large

manually-aligned corpus was used. In this chapter, we describe all the conducted

experiments and the obtained results.

In Chapter 9 we draw our conclusions and give our intuition of the possible directions

which the research work presented in this document might trigger.
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Chapter 2

Peculiarities and Challenges of the

Arabic NLP

The importance of Arabic as a language is not going to go away, no matter what happens

in the Middle East.

Even if things cool down there – which I think is impossible in the immediate future

– it will be an important language.

− ZoeGriffith−

9
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The word “Semitic” is an adjective derived from Shem, the name of one of the

three sons of Noah in the Bible1. This word is widely used to refer to a family

of languages which are historically related and have very similar grammars. The

“Semitic languages” family includes 17 languages2, the five most widely spoken ones

(with the number of speakers) are given in the Table 2.1.

Table 2.1: Ranking of the 5 top living Semitic features according to number of speak-

ers

Languages Number of speakers

Arabic 206,000,000

Amharic 27,000,000

Hebrew 7,000,000

Tigrinya 6,700,000

Syriac 1,500,000

Among the main grammatical features shared by the Semitic languages are the

following:

• They accept three numbers for nouns: Singular, dual and plural;

• All the words derive from a root which is composed of only consonants. These

consonants are called radicals and are generally of the number of three or four

[29];

• Verb tense: imperative, perfect (for completed actions) and imperfect (for un-

completed actions);

• Three cases for nouns and adjectives: nominative, accusative and genitive

In the context of NLP these features introduce new challenges. Thus, different tech-

niques will be needed in order to achieve a performance which is comparable to the

1http://en.wikipedia.org/wiki/Semitic
2Akkadian, Amharic, Amorite, Arabic, Aramaic, Ge’ez, Gurage, Hebrew, Maltese, Moabite,

Nabatean, Phonoecian, Punic, Syrica, Tigrinya, Tigre and Ugaritic.
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ones obtained in other languages such as English.

The Arabic language, the target language of the research work presented in this doc-

ument, is the most widely spoken Semitic language (see Table 2.1). It also ranks the

sixth most used language in the world (English is ranked third) and one of the six

official language of the United Nations3.

There are three forms of the Arabic language:

1. Classical Arabic: or Quranic Arabic is the form used in Quran and also in the

official documents from the 7th to the 9th century. Nowadays, classical Arabic

is only used in special occasions;

2. Modern Standard Arabic (MSA): is the form of Arabic used in television, radio,

newspapers, poetry, etc. It is the common language of all the Arabic speakers

and the most widely used form of the Arabic language. In the remainder of this

document we will use “Arabic” to refer to “MSA”;

3. Colloquial Arabic: is an only spoken form, even if most of the words derive

from MSA, it is region-specific and might be very different from one area of the

Arab world to another.

In this chapter, a detailed description of the different aspects of the Arabic language

will be given. We will emphasize each of the obstacles induced by the special features

of the Arabic language and give a state-of-art of the task in question. The remainder

of this chapter is organized as follows: In Section 2.1 we present the Arabic scripture,

codification and morphology. We illustrate the impact of the complex morphology of

the language on Arabic corpora investigating their Complexity, Variety and Harmony.

Further proofs on the impact of the Arabic morphology on the NLP tasks (mainly

Information Retrieval and Question Answering) are given in Section 2.2. Finally, we

give a special focus on the challenges of Arabic NER in 2.3 because of the importance

of the task.

3http://en.wikipedia.org/wiki/United Nations
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2.1 The Arabic Language: Scripture, Encodings

and Morphology

2.1.1 Scripture

The Arabic language has its own script (written from right to left) which is a

28 letters alphabet (25 consonants and 3 long vowels) with allographic variants and

diacritics which are used as short vowels, except one diacritic which is used as a

double consonant marker. The Arabic script does not support capitalization. It is

the second most widely used script in the world (after the Latin script). It is used

by other languages different than Arabic such as Persian4, Urdu5, Uyghur6 among

others. Figure 2.1 shows an illustrating example of Arabic text.

Figure 2.1: Example of Arabic text

2.1.2 Encodings

One of the main challenges of the Arabic text editors is the encoding, the two

most commonly used encodings are the following:

1. Windows CP-1256: 1-byte characters encoding supports Arabic, French, En-

glish and a small group of Arabic extended characters;

4http://en.wikipedia.org/wiki/Persian language
5http://en.wikipedia.org/wiki/Urdu language
6http://en.wikipedia.org/wiki/Uyghur language
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2. Unicode: 2-byte characters encoding and supports all the Arabic extended char-

acters.

Both of of these encodings are human compatible because they allow to normal

users to write, save and read Arabic text. However, many problems might be faced

when a program is processing an Arabic text encoded with one of the above mentioned

encodings. For this reason, Arabic NLP researchers would rather use the Buckwalter

transliteration7. This transliteration is a simple one-to-one mapping from Arabic

letters to Roman letters (Figure 2.2 shows the Buckwalter mapping table). Thus, it is

more machine compatible because machines are more prepared to work with Roman

letters. Nowadays, the Buckwalter transliteration has become the most commonly

used encoding in the Arabic NLP research community and many Arabic corpora such

as Arabic Treebank and Arabic Semantic Labeling task corpus used in SEMEVAL

2007 8 use this transliteration.

2.1.3 Morphology

The Arabic language has a very complex morphology because of the two following

reasons:

1. It is a derivational language: All the Arabic verbs derive from a root of three

or four characters root verb. Similarly, all the adjectives derive from a verb

and almost all the nouns are derivations as well. Derivations in the Arabic

language are almost always templatic, thus we can say that: Lemma = Root +

Pattern. Moreover, in case of a regular derivation we can deduce the meaning

of a lemma if we know the root and the pattern which have been used to derive

it. Figure 2.3 shows an example of two Arabic verbs from the same category

and their derivation from the same pattern.

2. It is also an inflectional language: Word = prefix(es) + lemma + suffix(es). The

prefixes can be articles, prepositions or conjunctions, whereas the suffixes are

7http://www.qamus.org/transliteration.htm
8http://nlp.cs.swarthmore.edu/semeval/tasks/task18/description.shtml
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Figure 2.2: Buckwalter mapping table

Figure 2.3: An example of Arabic language derivation

generally objects or personal/possessive anaphora. Both prefixes and suffixes

are allowed to be combinations, and thus a word can have zero or more affixes

(Figure 2.4 shows an example of the composition of an Arabic word).
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Figure 2.4: An example of Arabic words composition

The Arabic morphology is also very rich. Following we present the morphological

features and their possible values for an Arabic verb:

• Aspect : perfective, imperfective, imperative

• Voice : active, passive

• Tense : past, present, future

• Mood : indicative, subjunctive, jussive

• Subject: person, number, gender

• Object : acquire clitics

Moreover, the morphological features for an Arabic noun and their possible values

are as follows:

• Number : singular, dual, plural, collective

• Gender : masculine, feminine, neutral

• Definiteness: definite, indefinite

• Case : nominative, accusative, genitive

• Acquire possessive clitics
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2.1.4 Sparseness of the Arabic Data

Some of the advantages of working with a morphologically rich language such as

Arabic will be reported in Chapters 6, 7 and 8. In this subsection, we aim at giving a

clear overview on the difference between Arabic data and the data of other languages

with a less complex morphology.

As we have mentioned earlier in Subsection 2.1.3, an Arabic word is formed by a stem

plus affixes and clitics. Therefore, as it is shown in Figure 2.4, what can be expressed

in one Arabic word requires many words to be expressed in other languages. From

an NLP perspective, highly complex morphology causes “data sparseness” and thus

many NLP tasks would require a pre-processing of the data in order to obtain a high

performance. Data sparseness can also be defined as the insufficiency of data. In the

NLP context, data are seen as sparse (or insufficient) when the ratio of cardinality of

the vocabulary to total number of words is very high. Thus, one can intuitively deduce

that this ratio is higher for Arabic data than for other languages with less complex

morphology because the same word (such as the word “Iraq” in Figure 2.5) can be

attached to different affixes and clitics and hence the vocabulary is much bigger.

Figure 2.5: The word Iraq with different affixes

In order to tackle the problem of data sparseness, two solutions are possible:

1. Light-stemming : consists of simply striping off all the affixes and keeping only

the stem. In [66], the authors report a comparative study between different

Arabic light-stemming techniques. We briefly mention the technique which has

lead to obtain the best results in Subsection 2.2
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2. Tokenization: differently from light-stemming the affixes are not completely

removed but separated from each other and from the stem by the space char-

acter. In all our experiments, we use Mona Diab’s tokenizer [30] which is freely

available on her website9.

In order to prove experimentally the negative effect of the morphology complexity

of the Arabic language, we have carried out preliminary experiments with different

types of Arabic corpora and using some stylometric measures [15]. Following we

present the details about our experiments:

Data: We have selected four corpora of different types for our experiments. Ta-

ble 2.2 gives details about our corpora:

Table 2.2: Corpora description

Corpus Corpus 1 Corpus 2 Corpus 3 Corpus 4

Description Poetry Newspapers Linux Red Religious book

articles Hat tutorial

Author Abu-Taib Different authors Unknown Ibnu Qayyim

Al-Moutanabbi Al-Jaweziyya

Number of words 66,000 50,000 55,000 65,000

Size in kB 360 260 126 460

We have intentionally chosen the corpora to have approximately the same number

of words (see Table 2.2) in order to be able to compare the results obtained on each

one of them. The choice criteria of each corpora are the following ones:

• Corpus 1 : a collection of poems of one of the greatest poets of the Arabic

language10. This corpus has no specific topic and it is written in a very high

quality writing style. Also, it is very rich in vocabulary because the use of

synonyms in poetry is very well appreciated.

9http://www1.cs.columbia.edu/∼mdiab/
10http://en.wikipedia.org/wiki/Al-Mutanabbi
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• Corpus 2 : a collection of 111 newspaper articles. The texts are of different

topics and different domains which makes the vocabulary very rich.

• Corpus 3 : a scientific book focused on one single topic. Although the vocabulary

size is not very big, the reader would require more effort to read this book than

other types of books.

• Corpus 4 : it also contains a restricted vocabulary because it is focused on just

one topic. This religious book has been written by Ibnu Qayyim Al-Jaweziyya11

who has been also well appreciated for his writing style quality.

Measures: In [72], three measures have been proposed in order to determine the

writing quality and reading complexity of a certain text. Those measures are:

1. Complexity = C.log(M)

where C is the average number of characters in a word and M is the average

number of words in a sentence. The complexity is a factor which is very related

to the nature of the corpus.

2. V ariety = n/log(N)

where n is the cardinal of the vocabulary and N is the total number of words.

This factor gives an idea about the variety of expressions in a document. It is

most of all related to the author style and the nature of the document, e.g. a

low variety is expected in a scientific document or any document which covers

only one topic whereas a high variety is expected in a poem or a collection of

newspapers articles of different topics. Other considerations should be taken

into consideration for this factor, namely the language, e.g. in Arabic the use of

synonyms is appreciated as a good writing style which would significantly raise

the variety.

3. Correctness of the corpus words frequency distribution

This measure is based on “the principle of least-effort” of the Harvard linguist

11http://en.wikipedia.org/wiki/Ibn Qayyim Al-Jawziyya
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George Kingsley Zipf [112]. Zipf’s law is an empirical law based on the obser-

vation that the frequency of occurrence of some events is a function of its rank

in the frequency table. The simplest equation to express this function is the

following:

freq(r) =
C

rα
(2.1)

where r is the rank, C is the highest observed frequency and α is a constant

usually close to 1. This equation states that the most frequent event will occur

twice as often as the second most frequent word. Its graphical representation in

a log-log scale is a straight line with a negative slope. The different equations

which might express the Zipf’s law are widely discussed in the literature and

presenting an overview of the above goes beyond the scope of this document

and can be found in [76].

In [72], it has been also claimed that one way to measure the harmony of a

text is to compare its words frequency distribution with the ideal Zipf’s curve.

The authors explain that a corpus is less or more harmonious when it requires,

respectively, more or less effort from the reader. However, generally this com-

parison is visually done by a human being. This has motivated us to look for an

automatic comparison of the words frequency distribution and the Zip’s ideal

curve.

Kullback and Leibler have suggested in [64] a measure in order to determine the

distance between two probability distributions related to the same experiment.

DKL(P ||Q) =
∑
i

P (i)log
P (i)

Q(i)
(2.2)

where P is the “true” distribution (in this case, the words frequency distribu-

tion) and Q represents a theory (in this case, the Zip’s Law). It is also important

to note that the Kullback-Leibler distance has three important characteristics:

(a) D(P ||Q) > 0∀P,Q
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(b) D(P ||Q) = 0⇐⇒ P = Q

(c) D(P ||Q) 6= D(Q||P )

The Kullback-Leibler distance is very convenient to measure the correspondence

of the words frequency distribution to the Zip’s ideal curve. However, in order

to be able to use Equation 2.2, all the frequencies should be normalized to [0−1]

(see “Experiments and Results”).

Experiments and Results: We have organized our experiments as follows:

1. Pre-processing : eliminate the short vowels from all the corpora;

2. First experiment : compute Complexity, V ariety, the words frequency distri-

bution, the Zip’s ideal curve and the Kullback-Leibler distance;

3. Tokenization: tokenize the texts in order to be able to compare the results

obtained with raw text;

4. Second experiment : compute the same values of the first experiment on the

tokenized corpora.

Table 2.3 shows the results obtained for each of the corpora and measure. Fig-

ures 2.6, 2.7, 2.8 and 2.9 show the words frequency distribution and the Zipf’s ideal

curve for Corpus 1, Corpus 2, Corpus 3 and Corpus 4.

Discussion The results obtained for the complexity and variety measures are not

affected by the complex morphology of the Arabic language because we have obtained

the expected values for both raw and tokenized corpora. The complexity of Corpus

1 (Poetry) is considerably lower than the other corpora because the average number

of words in a poem sentence is approximately 5 words. The results shown in the

Kullback-Leibler distance columns prove that in all the cases the distance is signi-

cantly lower when a corpus is tokenized, i.e., we can make better statistical analyses

on Arabic corpora after tokenization.
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Table 2.3: Results obtained for Complexity, Variety and Kullback-Leibler distance

for each corpus

Corpora Complexity Variety Kullback-Leibler distance

Raw Tokenized Raw Tokenized Raw Tokenized

Corpus 1 2.14 1.84 1887.35 1547.86 -62486.31 22120.32

Corpus 2 18.55 14.94 1501.76 1033.87 49292.38 32836.98

Corpus 3 19.55 14.78 881.47 508.39 65381.42 41893.44

Corpus 4 23.62 16.52 1042.03 760.56 44473.40 28870.38

((a)) ((b))

Figure 2.6: The words frequency distribution and the Zipf’s ideal curve for corpus 1

2.2 Hardness of Information Retrieval and Ques-

tion Answering

In the previous subsection we have shown that it is not possible to perform the

most basic measures on Arabic corpora unless we first perform a pre-processing step

where the data is tokenized. This pre-processing step helps to overcome the data

sparseness problem which is induced by the complex morphology of the language (see

Subsection 2.1.3).

In the present and next subsections, we will show how the agglutinative feature of the
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((a)) ((b))

Figure 2.7: The words frequency distribution and the Zipf’s ideal curve for corpus 2

((a)) ((b))

Figure 2.8: The words frequency distribution and the Zipf’s ideal curve for corpus 3

Arabic language makes both the supervised and unsupervised NLP tasks much more

challenging. For this purpose, we have chosen two of the most important tasks of

NLP: (i) Information Retrieval (IR); and (ii) Question Answering (QA). Within the

QA task we will give also details about the hardness of the Passage Retrieval (PR)

and Named Entity Recognition (NER) tasks for the Arabic language. We finish this

chapter describing more in detail anout NER because it is: (i) very important for

most of the NLP tasks, (ii) approached by small number of researchers for the Arabic

language due to its difficulty; and (iii) the research topic of this Ph.D. thesis.
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((a)) ((b))

Figure 2.9: The words frequency distribution and the the Zipf’s ideal curve for corpus

4

2.2.1 Information Retrieval

IR is a task which aims at providing a set of documents that might contain the

information needed by the user [9]. Therefore, an IR system receives at the input a

“user query” (written in natural language) and returns at its output the set of the

most relevant documents to the query formulated in the input. In the case of Inter-

net search engines, such as Google12, Yahoo13 or MSN14, the IR system extracts the

relevant documents from all the texts with all the formats (text, HTML, PDF, etc.)

available on the web. On the other hand, in IR competition tasks such as those in

the Text REtrieval Conferences15 (TREC) and Cross Language Evaluation Forum16

(CLEF), the documents are extracted from a common document-set with the same

format. Moreover, in TREC 200117 and TREC 200218 an Arabic-English IR task (in

which the queries were given in English and the data set where to look for relevant

documents was in Arabic) was included which has considerably contributed to boost

research in Arabic IR. An overview of the obtained results is given in [32]. All the

12http://www.google.com
13http://www.yahoo.com
14http://www.msn.com
15http://trec.nist.gov/
16http://www.lef-campaign.org
17http://trec.nist.gov/pubs/trec10/t10 proceedings.html
18http://trec.nist.gov/pubs/trec11/t11 proceedings.html
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best systems, [67][24][106], report that they have used light-stemming to improve

their results. [67] have re-published in 2007 an improvement of their work in order

to give more details and deeper analyses of the best light-stemming technique for the

Arabic language [66]. As reported in the paper, the authors have used the TREC

2002 corpus for their experiments. The best results (average precision = 0.413 vs.

0.196 for raw text) were obtained when the authors performed an “affixes removal”

light-stemming. This technique consists of removing the strings which have been fre-

quently seen as prefixes and suffixes and infrequently seen as part of the stem. The

list of these affixes is also published in order to make possible an implementation of

the light-stemmer.

In our research work [16], which we present with details in 2.2.2, we have used the

same light-stemmer as in [66] for the passage retrieval task (a subtask of IR). Simi-

larly, we have achieved better results when the documents were light-stemmed.

2.2.2 Question Answering

As we have described previously (see “Information Retrieval”), IR systems are

designed to retrieve the documents which are estimated to be relevant to the user’s

query. Therefore, these systems are unable to satisfy the users who are interested

in obtaining a simple answer to a specific question. The research line aiming at

satisfying this kind of users is Question Answering. The study of the QA task research

guidelines [21] reported that there are generally four kinds of questioners where each

type represents questions with a certain level of complexity:

1. Casual questioner : asking concrete questions about specific facts; for instance:

“Who is the king of Morocco?”, “In which city will LREC’08 be held?”, etc.;

2. Template questioner : this type of questioner might ask some questions which

require the system to retrieve portions of the answer from different documents

and combine them in one answer. For instance: “What are all the countries

that border Morocco”, “What do we know about the life of Malcom X?”, etc.;
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3. Cub reporter : this other type of questioners would require a QA system to be

able to collect many information from different sources about a single fact. This

type of questioners was named “Cub Reporter” because reporters need all the

available information to write a report about a fact, for instance a “flooding”

(place and time, the damaged area, the estimated dollar damage, number of

killed and injured citizens, etc.), a “war” (countries involved in the war, impact

of the war, political reasons, damaged area, etc.), etc.;

4. Professional information analyst : finally, this is the highest level of questioners

which need a system able to be able to deduce and decide by itself the answer

because the question might be something like “Is there any evidence of the

existence of weapons of mass destruction in Iraq?”.

The analysis of the CLEF and the TREC results shows that up to now only the two

first types of questions (casual and template) have been covered by the QA research

community. The most successful system in the monolingual task of the CLEF 2007

used sophisticated NLP tools (embedded ontologies, synonyms dictionaries, corefer-

ence resolution tools, an accurate NER system, etc.) [68] and obtained an accuracy

of 54%. The second best participation[6] obtained 44.5%. The authors report that

the most relevant module of their system is a syntactical question analyzer which

performs the extraction of named entities and keywords from the questions.

In TREC 2007 [28], the best participation [79] obtained an overall result of 48.4. The

authors report that the most relevant aspect of their system consisted in enhancing

their NER system, which they have named “Rose”, adding finer grained types. The

second best results [52], obtained 35.75 by enhancing the performance of their re-

trieval system. In order to do so they have adopted a keyword-based approach to

retrieve the passages in the documents which might contain the answer; i.e., their re-

trieval system has been boosted by an NER system, a semantic dependencies parser

and a semantic frames recognizer. Finally, in [87] the authors have obtained the third

best participation with an overall score of 23.10. They argue that their system is

more focused on casual questioner type of questions (also called “factoid questions”).

For this purpose, their factoid questions component uses a model to resolve time con-
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straints, a query expansion module and an answer ranking module.

The CLEF organizers offered an evaluation platform for many languages but unfor-

tunatly the Arabic language does not figure among them. The non-existence of a

test-bed for Arabic language makes QA even more challenging. However, there have

been two attempts to build Arabic QA systems oriented to: (i) structured data, a

knowledge-based source of information [78]; and (ii) unstructured data [49]. The

test-bed of the second QA system was composed of a set of articles of the Raya19

newspaper. In the evaluation process four Arabic native speakers were asked to give

the system 113 questions and judge manually the correctness of its answers. The

reported results of precision and recall are of 97,3%. These (possibly biased) results

seem to be very high if compared with those obtained before for other languages in

the CLEF 2007 and TREC 2007 competitions. Unfortunately, the test-bed which

was used by the authors is not publicly available in order to compare the QA system

with others. Hence, the QA task for the Arabic language is very few investigated and

the research works which were published either they do not tackle QA problems for

unstructured data, do not report the real problems encountered and their possible

solution or both. For this reason, we have considered that an effort needs to be done

in order to explore the challenges and the required techniques in order to build an

Arabic QA system, which we named “ArabiQA”, that: (i) extracts the answers from

natural language texts; and (ii) uses the CLEF and TREC guidelines for the evalua-

tion of the different modules of the system.

In order to build such a system, we have chosen the architecture illustrated in Fig-

ure 2.10. From a general viewpoint the system is composed of the following compo-

nents:

• Question Analysis module: determines the type of the given question (in order

to inform the Answer Extraction (AE) module about the expected type of an-

swer), the question keywords (used by the passage retrieval module as a query)

and the named entities appearing in the question (which are very essential to

validate the candidate answers);

19http://www.raya.com
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Figure 2.10: Generic Architecture of our Arabic Question answering system, ArabiQA

• Passage Retrieval (PR) module: it is the core module of the system. It retrieves

the passages estimates relevant to contain the answer;

• Answer Extraction (AE) module: it extracts a list of candidate answers from

the relevant passages;

• Answers Validation module: it estimates for each of the candidate answers the

probability of correctness and ranks them from the most to the least probable

correct one.

• Named Entity Recognizer : a vital component in the QA system which identifies

the different named entities within the text (both documents and questions).

Following we give more details about ArabiQA components which have been al-

ready developed. This will allow us to clarify other aspects of the errors induced by

the complex morphology of the Arabic language.
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Figure 2.11: The JIRS architecture

Passage Retrieval

In order to develop a PR system for our Arabic QA system, we decided to investi-

gate the possibilty of adapting the language-independent Java Information Retrieval

System (JIRS)20. Many are the systems participating in different tasks of CLEF 2005

[110][42] and 2006 [19] [85] [37] which have used JIRS for PR. This shows that JIRS

can be also employed in other NLP tasks than just QA [37]. JIRS proved to be

efficient for the Spanish, Italian, French and English languages. The peculiarity of

the Arabic language of being highly inflectional and, therefore, very different with

respect to the above languages, made the study of the possibility of using JIRS very

interesting and its adaptation very challenging.

Figure 2.11 illustrates the architecture of the JIRS system.

JIRS is a QA-oriented PR system which in order to index the documents it relies

on an n-gram model. The PR systems retrieve the relevant passages in two main

steps [43]. In the first step it searches the relevant passages and assigns a weight to

each ine of them. The weight of a passage depends mainly on the relevant question

terms appearing in the passage. The second step performs only on the top “m”

20freely available at http://sourceforge.net/projects/jirs
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Figure 2.12: An example to illustrate the performance of the Density Distance model

(an English translation is given in between parenthesis)

passages of the relevant passages returned by the first step (generally m=1,000). In

this step, JIRS extracts the necessary n-grams from each passage. Finally, using

the question and the passage n-grams, it compares them using the Density Distance

model. The idea of this model is to give more weight to the passages where the most

relevant question structures appear nearer to each other. For example, let us suppose

the question and the two passages shown in Figure 2.12. The correct answer to the

question is “Rabat”. The Density Distance model would give more weight to the first

passage because the distance between the words capital and Morocco is smaller than

the distance between these same words in the second passage.

The Arabic-JIRS version of the passage retrieval system [16] relied on the same ar-

chitecture of Figure 2.11. The main modifications were made on the Arabic language-

related files (text encoding, stop-words, list of characters for text normalization, Ara-

bic special characters, question words, etc.). The Arabic-JIRS is also available at the

main web page21.

Finally, in order to evaluate the efficiency of our PR system on Arabic text, we have

21http://sourceforge.net/projects/jirs
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used a snapshot of the articles of the Arabic Wikipedia22 (11,638 documents). We

have manually built a set of 200 questions (considering the different classes that were

reported in the CLEF 2006 competition) and a list of the correct answers of these

questions. Our experiment-set consisted of evaluating JIRS on both raw documents

and light-stemmed documents. In order to obtain an efficient light-stemming we have

used the same light-stemmer which has helped to obatin the best results in [66]23.

For each experiment we have computed the Coverage (ratio of the number of the

correct retrieved passages to the number of the correct passages) and Redundancy

(average of the number of passages returned for a question) measures to evaluate the

system. Figure 2.13 shows the coverage (a) and the redundancy (b) measures for

both experiments.

((a)) ((b))

Figure 2.13: Comparison of Coverage and Redundancy of JIRS over both light-

stemmed and non-stemmed Arabic corpora

Figure 2.13 shows that the complex morphology of the Arabic language decreases

the coverage of the PR system up to 10%. Moreover, in redundancy the system has

raised from 1.65 to 3.28 (an increase of 100%) when we have performed the light-

22http://ar.wikipedia.org
23At the moment of performing these experiments the light-stemmer was freely available at

http://www.glue.umd.edu/∼kareem/research/
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stemming on the documents.

The PR system is an essential component of a QA system because it is charged of

retrieving the passages where the answer is located. Thus, the other components

cannot extract the answer if the PR does not retrieve the relevant passages. Our

experiments show that the same error rate induced by the complex morphology of the

Arabic language in the IR task can be experimented in the PR task and consequently

in the QA task. Similarly to the IR, light-stemming has been proved to be a convenient

solution in order to enhance the performance of the PR module.

Named Entity Recognizer

An accurate NER system is of great importance for a QA system and especially

for answering factoid questions. Its role is to identify and classify all the NEs within

the passages retrieved by the PR module (Figure 2.14 gives an example of the output

of the NER system). To our knowledge, there are no freely available Arabic NER

Figure 2.14: Illustrating example of the input and output of an NER system

systems. The existing ones were built for a commercial purpose: Siraj24 (by Sakhr),

ClearTags25 (by ClearForest), NetOwlExtractor26 (by NetOwl) and InxightSmartDis-

24http://siraj.sakhr.com/
25http://www.clearforest.com/index.asp
26http://www.netowl.com/products/extractor.html
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coveryEntityExtractor27 (by Inxight). Unfortunately, no performance accuracy nor

technical details have been provided and a comparative study of these systems is not

possible.

The NER system that we have integrated in ArabiQA, ANERsys [18], is described

with details in 4 and the details about its performance are given in 7. This system is

based on a Maximum Entropy approach and reaches an overall F-measure of 55.23.

As we explain in 2.2.2, a good performance of the global QA system is not possible

without enhancing the NER system. Moreover, the NER task becomes much more

complicated (see Section 2.3) because of the complex morphology of Arabic which we

have described in 2.1.3. For this reason, we have decided to make further investiga-

tions to obtain an accurate and efficient NER system oriented to the Arabic language.

The different approaches which were take into considerations in these investigations,

together with the obtained results, are the main subject of this Ph.D. thesis.

Answer Extraction

The AE task is defined as the search for candidate answers within the relevant

passages. The task has to take into consideration the type of answers expected by

the user [25], and this means that the AE module should perform differently for each

type of question. Using an accurate NER system together with patterns seems to

be a successful approach to extract answers for factoid questions [1][80]. The same

Approach has been reported to give promising results for the Arabic language [49].

However, for difficult questions it is needed a semantic parsing to extract the correct

answer [50][75]. In our research work [17], we have built an AE module for only Arabic

factoid questions. Our module performs in three main steps (Figure 2.15 gives an

illustrating example):

1. The NER system tags all the NE’s within the relevant passages;

2. The AE module makes a preselection of the candidate answers eliminating NEs

which do not correspond to the expected type of answer;

27http://www.inxight.com/products/smartdiscovery/ee/index.php
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3. A final decision on the list of candidate answers is taken by means of a set of

patterns which we have prepared manually.

Figure 2.15: Illustrating example of the Answer Extraction module’s performance

steps

In order to make an automatic evaluation of the AE module we have prepared a

test-set composed of the following elements:

1. List of questions of different types;

2. List of questions types which contains the type of each of the test questions;

3. List of relevant passages (we have manually built a file containing a passage

which contains the correct answer for each question);

4. List of correct answers (containing the correct answer for each question).

Note that the idea behind doing a manual selection of the relevant passages is to be

able to estimate the exact error rate of the AE module.

The results showed that with this method we can obatain a precision (number of
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correct answers / number of questions) of 83.3%. Our error analysis showed that

the precision can be increased only if the NER system is enhanced (the NER system

used in these experiments is ANERsys 1.0, see 5 for a detailed description of the

experiments).

2.3 Hardness of Arabic Named Entity Recognition

As we have introduced in the Subsection 2.2.2, the lack of accurate NER systems

oriented to the Arabic language and the hardness of the Arabic NER task itself

have lead us to conduct further investigations in this research field. The illustrating

example given in 2.14 shows the input and output strings of an NER system.

The NER task is considerably more challenging when it is targeting a morphologically

complex language such as Arabic for two main reasons:

1. Lack of capitalization; English, like many other Latin script based languages,

has a specific signal in the orthography, namely capitalization of the initial

letter, indicating that a word or sequence of words is an NE. Arabic has no

such special signal (see Subsection 2.1.1) making the detection of NEs more

challenging. Thus, from a lexical viewpoint, there is no difference between an

NE (see the word “Mexico” in Figure 2.16) and the other word (see the word

“life” in Figure 2.16).

Figure 2.16: Illustrating example of an NE and non-NE starting with the same char-

acters

2. Arabic is an agglutinative language. As we have argued in 2.1.3 the Arabic

language has a complex morphology. We have also shown (see Section 2.2) that
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this characteristic renders most of the NLP tasks more challenging. Similarly,

in the NER task it is very important to take into consideration that a pre-

processing step is needed to tackle the data sparseness. Otherwise, a very large

amount of data would be required for a good training because both the NEs (see

Figure 2.5) and the context in which they occur (see Figure 2.17) might appear

in different surface forms. However, in the context of NER, light-stemming is

not a convenient solution because the affixes should be kept in the text otherwise

many important words of the context are lost. For this reason, tokenization is

a more appropriate solution because it only separates the clitics from the stem

word without removing any tokens. In the next chapter, we will describe in

detail the NER task.

Figure 2.17: Illustrating example of an NE appearing in different contexts because of

the complex morphology of the Arabic language

2.4 Concluding Remarks

The Arabic language is a Semitic language and thus it has a templatic morphology

where words are made up of roots and affixes (clitics agglutinate to words). This

causes a great variety of surface forms. In the context of NLP, this phenomenon is

called “data sparseness” (or “data insufficiency”). For this particular reason, both

the NLP tasks , supervised and unsupervised, become more challenging and need to

be approached differently.

For IR and PR (a subtask of IR and the core component of a QA system), the

agglutinative feature of the Arabic language makes the documents which are relevant
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to the user’s query invisible to the IR system because a word has a considerable

probability to appear with different affixes. Thus, the research studies which we have

presented prove empirically that an IR system performs much better on light-stemmed

Arabic texts. Moreover, the QA task also becomes considerably harder because each

of its components has to overcome the problems induced by the complex morphology

of the Arabic language. The NER system, whose accuracy has direct impact on the

overall QA system performance (see Section 3, required major efforts in Arabic. The

NER task is harder for the Arabic language than for other languages because of:

(i) lack of capital letters in the Arabic scripture; and (ii) the great sparseness of the

Arabic data decreases the efficiency of the training. In order to tackle this problem we

have conducted several experiment-sets which we present with the necessary details

throughout this document.
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The Named Entity Recognition

Task

In Western languages the names of the four seasons became complete only a few

centuries ago. Words for “winter” and “summer” appear quite early but in English

“spring” came to be used as the name of the season as late as the sixteenth century,

and in German “fruhjahr”, “spring” appeared about the same time. Similarly, in

India “hemanta (winter)” and “vasanta (spring)” appear in Sanskrit literature very

early, while other seasonal terms come much later.

–Anonymous Japanese author–
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From a human viewpoint, the contribution of NEs to make the communication

easier and more precise is obvious. However, a scientific proof is needed in order

to be able to make the same statement about NEs in the statistical NLP context.

In [100], Shannon defines the “self-information” (also designed as the “quantity of

information”) contained in an event x as the measure of the amount of surprise. For

instance, if a person “A” informs a person “B” on Friday that the day after will

be a Saturday then the amount of surprise of “B” is zero. Whereas if “A” informs

“B” that the Pope Benedict XVI has converted to Islam then the amount of surprise

will be huge. Thus, Shannon explains that self-information of an event x is inversely

proportional to its occurrence probability. Hence, it can be expressed by the following

formula:

I(x) = −log2(p(x)) (3.1)

In order to calculate the self-information of NEs we have carried out an experiment

which consists of the following steps:

• Tokenize and Part-Of-Speech (POS) tag a corpus annotated for the NER task:

for this purpose we have used the corpus which we have developed ourselves1

(see Chapter 5) and a POS tagger which is freely available2.

• Compute the probability of occurence of each of the following word categories:

1. NEs : the proper nouns of people, places and organizations (tagged as NEs

in the NER annotation).

2. Verbs : the actions tagged as VBD (Verb, past tense), VBP (Verb, present

tense, not 3rd person singular) and VBN (Verb, past participle) by the

POS-tagger;

3. Common nouns : the classes and categories of entities (tagged as NN and

NNS by the POS-tagger).

1http://www.dsic.upv.es/grupos/nle/downloads.html
2http://www1.cs.columbia.edu/∼mdiab/software/AMIRA-1.0.tar.gz
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4. Stop words : the rest of the words which are adjectives (JJ), prepositions

(PRP), punctuations (PUNC), conjunctions (CC), determiner (DT), etc.

• Finally, using Equation 3.1, compute the self-information of each of the four

categories for different number of words.

Figure 3.1 illustrates the obtained results. It shows that the only word category

which contains more information than NEs (NEs represent around 11% of the corpus)

refers to verbs.

Figure 3.1: NEs quantity of information in comparison with Part-of-Speech word

categories

This measure highlights the importance of NEs from a statistical viewpoint. From

an NLP viewpoint, we can find abundant research works in the literature which show

the necessity of an accurate NER system for many tasks. In Section 3.1, we describe

some of the most interesting research works which remark the importance of NER

for NLP tasks such as IR, monolingual and cross-lingual QA, text clustering and ma-

chine translation. Whereas in Section 3.2 we present all the formal definitions of the

NER task. We report the state-of-art of this task in Section 3.3 and we draw some
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conclusions of this chapter in Section 3.4.

3.1 How Important is the Named Entity Recogni-

tion Task?

In the previous chapter, we have described the different peculiarities of the Arabic

language and have given an overview of their impact on the NER and other NLP

tasks. In this section, we will show the importance of the NER task for other NLP

tasks from a language-independent perspective. Thus, differently from the previous

chapter, we will present several research works from different NLP research areas

which have proved the necessity of accurate and efficient NER systems.

Information Retrieval In [102], the authors carried out a statistical study about

the ratio of user queries containing NEs, over a period of several days, to different news

databases. They report that 67.83%, 83.4% and 38.8% of the queries contained an NE

according to Wall St. Journal, Los Angeles Times and Washington Post, respectively.

Furthermore, the authors present the study which they have conducted on the impact

of using an NER system to boost the IR task. Their experiments consisted in using

a set of 38 queries containing person NEs and a document-set of 410,883 documents.

Thereafter, both the queries and the text are tagged by an NER system. During the

indexing phase of the IR system, the words tagged by the NER system are the only

words which are not stemmed. This is because the idea of stemming words in order

to group those words which have the same stem cannot be applied to NEs. Another

important aspect of their NER-based approach is that each term in the query is

treated as a different concept except the NEs terms which are always kept together.

In order to illustrate this approach, the authors give the example of the query “Cases

involving jailhouse lawyer Joe Woods”. In this case the NE-based approach would

compute the tf-idf [95] (term frequency-inverse document frequency) for Joe Woods

(0.78) as a single concept instead of computing it for Joe (0.31) and Woods (0.24) a
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part. The results showed that the new approach outperforms the baseline precision

(a probabilistic retrieval engine [108]) on all the levels of recall.

Monolingual and Cross-lingual Question Answering The impact of the NER

task on the monolingual and CLQA has been investigated further than for IR. On

one hand, in [36] the authors argue that a study of the percentage of the questions

containing one or more NEs in the CLEF 2004 and 2005 competitions, showed that

the majority. more precisely 87.7%, of questions contain an NE (see Table 3.1).

Table 3.1: Percentage of questions in CLEF 2004 and 2005 containing NEs per type

Type of NE Percentage

Person 29.5%

Location 26%

Organization 20.5%

Miscellaneous 19.3%

The authors argue that it is also possible to find more than one NE in a question.

For instance, question 106 in CLEF 2004 was:

What institution did Brazil, Portugal, Angola, Mozambique, Saint Tome and Principe,

Guinea-Bissau and Cape Verde form in Brasilia?

where we can find 8 NEs (all of them of the same type, i.e. Location) which are:

Brazil, Portugal, Angola, Mozambique, Saint Tome and Principe, Guinea-Bissau,

Cape Verde and Brasilia.

Question 130 in CLEF 2006 is an example of a question containing different types of

NEs: Which organization did Primo Nebiolo chair during the Athletics World Cham-

pionships in Gothenburg?

where the NEs are the following: Primo Nebiolo (Person), Athletics World Cham-

pionships (Organization) and Gothenburg (Location). Therefore, an accurate NER

system able to recognize the necessary NEs in a question and within the documents

is of significant relevance in order to build an efficient QA system.
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On the other hand, in [44] the authors state that the performance of a QA system

can be considerably improved if an NER system is used to preprocess questions which

expect an NE as an answer. For this type of questions, it is typically more adequate

to use a technique based on automatically creating a list of patterns which help to

extract the answers. However, for some questions it is not possible to find good pat-

terns. For instance, for the question “When did X die?”, two of the best patterns

found to extract the answer were:

• X died in ANSWER

• X was killed in ANSWER

Such patterns cannot be used to extract the answer because in the place of ANSWER

both a date and a location could fit perfectly. Thus, in order to avoid such ambiguity

in the patterns, the authors have carried out some experiments using an NER system

to replace the ANSWER occurrences by a more specific type of NE such as LOCA-

TION, DATE, PERSON, etc. The experiment-set consisted of extracting answers for

two sets of questions: (i) questions with the pattern “When was X born”; and (ii)

with the pattern “When did X die”. The ratio of correctly answered questions for

the former set of questions was increased from 52% to 53%. Whereas for the latter

one it has been increased from 0% to 53%.

Furthermore, in [81] a QA system (named “AnswerFinder”) which relies heavily on

the quality of the embedded NER system is described. In this research work, the

authors experimentally prove that a QA system can obtain a higher benefit from the

NER system if the levels of granularity of the NER system and the types of questions

match. The reason behind this hypothesis can be explained by, briefly, reviewing

the approach used by AnswerFinder to extract the answers. Similarly to many other

QA system, after analyzing and classifying each question, AnswerFinder proceeds to

retrieve the passages where the answer can be found. Once all the candidate passages

are extracted, it makes a first filtering of the passages which do not contain the type

of answers expected by the user. For instance, let consider the first question of the

217th group of questions in TREC 2007: “What company produces Jay-Z records?”,
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and we presume that the question classification phase correctly classifies the type of

answer expected by the user: name of an organization. After retrieving the candi-

date passages, AnswerFinder would tag all the passages and perform the filtering step

which would consist of removing all the passages which do not contain any NE of type

Organization. The authors argue and prove that the efficiency of this method depends

highly on two main factors: (i) the first one is that the levels of granularity of both the

NEs types considered by the NER system and the filtering module should match as

much as possible; and (ii) the recall of the NER module should be considerably high.

For instance, if the NER system is not designed to classify the NE type Organization

then the filtering module might remove relevant passages to extract the answer. In

their experiments, the authors have used the TREC 2005 corpus and different types

of NER systems. Their results show that when an NER system with the adequate

tags-set is used the results are enhances up to 1.3%.

Additionally, on the CLQA side the NER systems are necessary also to avoid a trans-

lation of the NEs as common nouns. In [36] and [94] the authors show that a consid-

erable error rate is experimented when the automatic translator does not manage to

transliterate properly the NEs.

[8] report a study of the possibility of improving the performance of a Machine

Translation (MT) by embedding an NER system. The authors have tagged all the

text which has to be translated by an NER system as a pre-processing step. There-

after, the words tagged by the NER system were translated using the methods which

are specific for NEs translation. The results showed that this technique outperforms

the methods which do not consider tagging the NEs before the translation.

Text Clustering Search result clustering (a sub-task of Text Clustering) is an

NLP task focused on clustering in groups the results returned by a search engine.

For instance, if we have the documents returned by a search engine for the query

“Michael Jordan”, in order to make these results easier to explore for the user, a

result clustering system would cluster the documents concerning Michael Jordan the
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basketball player3 in one cluster, and the ones concerning the Berkeley professor4 in

another cluster. In [105], the authors report that they have outperformed the existing

search results clustering by including an NER system in their global system in order

to give a special weight to the NEs in their clustering approach.

3.2 The Named Entity Recognition Task: Defini-

tions

Section 3.1 shows that many research works from different NLP fields report that

the use of an NER system to pre-process the documents might help to improve the

performance of the global system. It also shows that the classes of NEs handled by

the embedded NER system should correspond to the needs of the global system. In

this section, we describe the standard definitions of the NER task which have been

adopted in the key evaluation campaigns. We also aim at emphasizing the exact

differences between those definitions.

3.2.1 The 6th Message Understanding Conference (MUC-6)

The 6th Message Understanding Conference (MUC-6) is a conference sponsored by

the Defense Advanced Research Projects Agency (DARPA). In 1995, an NER task has

been organized with the goal of encouraging research in the Information Extraction

(IE) field. In the NER task, which was held within MUC-6, the organizers defined

three sub-tasks [45]:

1. ENAMEX: Detection and classification of proper names and acronyms. The

classes considered in this sub-task are:

• ORGANIZATION : named corporate, governmental, or other organiza-

tional entity such as “Bridgestone”, “Mips” or “Language Computer Cor-

poration”;

3http://en.wikipedia.org/wiki/Michael Jordan
4http://www.cs.berkeley.edu/∼jordan/
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• PERSON : named person or family such as “Mahatma Ghandi”, “Marie

Curie”or “Bill Clinton”;

• LOCATION : name of politically or geographically defined location (cities,

provinces, countries, international regions, bodies of water, mountains,

etc.) such “Morocco”, “Italy” or “Spain”.

2. TIMEX: Detection and classification of temporal expressions. The classes

considered in this sub-task are:

• DATE : complete or partial date expression such as “January 2008”, “sum-

mer” or “first quarter of 2007”.

• TIME : complete or partial expression of time of day such as “5 p.m.”,

“eleven o’clock” or “12h45 a.m.”.

3. NUMEX: Detection and classification of numeric expressions monetary ex-

pressions and percentages. The classes considered in this sub-task are:

• MONEY : monetary expression such as “9,000 Euros”, “million-dollar” or

“$16,000”.

• PERCENT : percentage such “5%”, “20 pct” or “20.3%”.

378 “English” documents have been used in order to train and evaluate the partici-

pating systems [40]: 84.12% of the documents for training, 7.93% as a development-set

and 7.93% for test. An on-line annotation was used, Figure 3.2 shows a sample of

MUC-6 NE annotation.

The evaluation measure which was used is the Fβ=1-measure which can be ex-

pressed as:

Fβ=1 =
(β2 + 1) ∗ precision ∗ recall
β2 ∗ (precision+ recall)

(3.2)

Where precision is the percentage of correct NEs found by the system. It can be

expressed as:

precision =
Number of correct named entities found by the system

Number of named entities found by the system
(3.3)
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Figure 3.2: MUC-6 named entity annotation sample

and recall is the percentage of NEs existing in the corpus and which were found by

the system. It can be expressed as:

recall =
Number of named entities found by the system

Total number of NEs
(3.4)

3.2.2 Conference on Computational Natural Language Learn-

ing (CoNLL)

In CoNLL 20025 and CoNLL 20036 the shared task concerned language-independent

NER. In CoNLL 2002 the participants evaluated their systems on Spanish and Dutch

corpora [103] and on English and German data in 2003 [104]. In both evaluations the

classes which were taken into consideration are the following:

1. PER : Person class, same as PERSON class in MUC-6 (see Subsection 3.2.1);

2. LOC : Location class, same as LOCATION class in MUC-6 (see Subsec-

tion 3.2.1);

3. ORG : Organization class, same as ORGANIZATION class in MUC-6 (see

Subsection 3.2.1);

4. MISC: NEs which do not fit in the other classes such as “Professional League”,

“Article 4102” or “Law of Criminal Procedure”.

Also, in both evaluations the data were annotated using the IOB2 scheme which

is a variant of the IOB scheme introduced by [88]. This tagging scheme rules are as

following:

5http://www.cnts.ua.ac.be/conll2002/
6http://www.cnts.ua.ac.be/conll2003/
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• The words which are Outside NEs are tagged as “O”.

• The tag “B-TYPE” is used for the first word (Beginning) of an NE of class

TYPE.

• Words which are part of an NE of class TYPE but are not the first word are

tagged as “I-TYPE” (Inside)

Figure 3.3 shows an extract of a IOB2 tagged corpus (from the Spanish corpus

used in CoNLL 20027) and Table 3.2 shows details about the size of the different

corpora.

el O

ministro O

de O

Comunicaciones B-MISC

de I-MISC

Brasil I-MISC

, O

Joao B-PER

Pimienta I-PER

da I-PER

Veiga I-PER

Figure 3.3: An extract of an IOB2 tagged corpus

The Fβ=1-measure, F-measure for short, has been used as a measure for evaluation

(see Equations 3.2, 3.3 and 3.4).

3.2.3 Automatic Content Extraction (ACE)

In the ACE evaluations there are two main tasks: Entity Detection and Recog-

nition (EDR) (Entity Detection and Tracking, EDT, in ACE 2003) and Relations

7http://www.cnts.ua.ac.be/conll2002/ner/data/
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Table 3.2: Size of corpora used in CoNLL 2002 and 2003 evaluations

Corpus Total number of Tokens Training Development Test

CoNLL 2002
Spanish 380,923 71.67% 14.4% 13.93%

Dutch 333,582 65.57% 12.18% 22.25%

CoNLL 2003
English 301,418 67.55% 11.51% 20.94%

German 310,318 66.68% 11.05% 22.27%

Detection and Characterization. Within both tracks the considered languages are

English, Chinese and Arabic. The EDR task is an extension of the NER task and it

requires much more than the identification and classification of the NEs within a text.

However, we find it very important to give a brief description of the task in order to

emphasize the importance of NER for EDR and to give an overview of the tag-sets

used in the ACE evaluations because we are using ACE data in our experiments.

The EDR task consists of two sub-tasks:

• Mention Detection (MD): which consists of the recognition and classification of

all the “pronominal”, “nominal” and “named” mentions of entities in the text.

For instance, if we consider the sentence “John has resigned from his position

as a manager of Walmart”, the MD system would have to capture the following

mentions: (i) “John”, a named mention of a person; (ii) “his”, a pronominal

mention of a person; and (iii) “manager”, a nominal mention of a person; and

(iv) “Walmart”, a named mention of an organization.

• Coreference Resolution (Coref): in this subtask, the aim is to link the mentions

which refer to the same entity. For instance, in the example which we have

given to illustrate the goal of an MD system, the Coref system should be able

to determine that the extracted mentions refer to two entities, namely: {John,

his, manage} and {Walmart}.

The entity types which have been taken into consideration in ACE 2003 [3] are

the following:



Chapter 3: The Named Entity Recognition Task 49

1. Person: Person class, same as PERSON class in MUC-6 (see Subsection 3.2.1);

2. Organization: Organization class, same as ORGANIZATION class in MUC-6

(see Subsection 3.2.1);

3. GPE (Geo-Political Entity): Politically defined geographical regions. It

includes nations, states and cities. For instance, “Cubans” or “Iraq” in a context

such as “Iraq has been attacked ...”;

4. Location: Geographical entities with physical extent. It includes landmasses,

bodies of water and geological formations. Which is equivalent to the LOCA-

TION class in MUC-6 (see Subsection 3.2.1);.

5. Facility: Human-made buildings. It includes houses, factories, stadiums, etc.

For instance, “Empire State building” or “Santa Monica Hospital”.

In the ACE 2004 (and the evaluations which came after [4][5]) two new entity

types were introduced which are the following:

1. Vehicle: All types of vehicles (land, air, subarea-vehicle, etc.) such as “F-16”

or “Hummer H3x”.

2. Weapon: All types of weapons (biological, chemical, nuclear, etc.) such as

“Anthrax” (a biological weapon) or “Nodong-1” (a missile).

The detection and classification of named mentions, in the MD sub-task, is equiv-

alent to the NER tasks of the CoNLL and MUC competitions. In our research work

we have focused on this type of evaluation and we have conducted experiments with

data which have been used in ACE evaluations and data which we have produced

ourselves taking into consideration the CoNLL corpora as guidelines. In Section 6

we will describe more details about the data which we have used in our experiments

(details about the size of the ACE 2003, 2004 and 2005 can also be found).

In order to measure the efficiency of the learning systems participating in the

evaluation, the organizers have chosen a measure, named “ACE-value”. This mea-

sure assigns different weights to different types and levels of mentions, and different
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penalities to the types of errors of the MD and Coref systems. The named mentions

are assigned the most important weight which is a direct proof that an improvement

of the NER task would have as a direct consequence an the improvement of the global

EDR system.

In our experiments we will use the F-measure because the “ACE-value” is only

applicable for the EDR task.

3.3 The Named Entity Recognition Task State-of-

Art

In order to present the most important research works which have been carried

out in the NER task, we will present first some characteristics of the systems which

have participated in MUC-6, CoNLL 2002 and 2003. Unfortunately, the results and

proceedings of the ACE evaluations are not available. However, we will describe

other research works which have not participated in competitions but are worth to

be presented because of the richness of their investigation.

3.3.1 MUC-6

According to [82], research works in NER have started in 1991. However, the

publication rate has really accelerated only since 1996 with the first major event

dedicated to the task, i.e. MUC-6. Particularly, in this event more than half of the

participations have obtained, in the NER task, an F-measure above 90. The best

three participations are the following:

1. Systems Research and Applications (SRA) has participated with SRA system [62]

which is composed of two main parts. Unfortunately, the part which was ori-

ented to the NER task is the commercial system NameTagTM(which was inte-

grated in the global system). Only the commercial features of “NameTagTM” are

presented in the paper. The four official runs of SRA system have obtained the

three first and ninth best results in the MUC-6 participations. Those runs are:
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(i) “BASE” (96.42) which makes the maximum analysis, it obtained the best

results; (ii) “FAST” (95.66) makes less analysis than the previous run but takes

less time; (iii) “FASTEST” (92.61) is the fastest mode but obtains the lowest

performance in comparison with the first two modes; and (iv) “NO-NAMES”

(94.92) is the same as “BASE” but decreasing the tags-set of “NameTagTM”,

because it is prepared to tag more NEs than those required in the competition.

2. SRI international has participated with the FASTUS system [7]. This system

is based on a series of transducers which transforms text from sequences of

characters to domain templates. The authors report that the FASTUS sys-

tem has obtained good results in many IE sub-tasks (extraction of information

on: terrorist incidents, joint ventures, etc.), for different types of texts (open-

domain, military texts, hypertext, etc.) and for two languages: English and

Japanese. In its participation in the MUC-6 competition, FASTUS has ob-

tained F-measure=94 which makes it rank as second best participant and forth

best run.

3. BBN Systems and Technologies has participated with the PLUM System [10].

This system obtained F-measure=93.65 and was situated in the third rank as

participant and fifth rank as a run. For the NER task, the PLUM system

combines a statistical approach (based on Hidden Markov Models) which uses

morphological information (extracted by a morphological analyzer), together

with lexical patterns (extracted automatically).

3.3.2 CoNLL 2002 and 2003

Differently from the MUC-6 competition (focused only on the English language),

in the CoNLL 2002 and 2003 the goal was to encourage people to investigate language-

independent approaches for the NER task. For this reason, in both years two corpora

of different languages (Spanish and Dutch in 2002 and English and German in 2003)

were used. In this subsection we will emphasize the best participations of the CoNLL

competitions:
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CoNLL 2002 The baseline model consisted in assigning to each word the class

which it was mostly assigned in the training corpus. The words which have not been

seen in the training phase are tagged as outside words (“O”). For the Spanish lan-

guage the performance obtained with the baseline model (35.86) was lower than for

the Dutch language (58.28). However, the overall results obtained for the Spanish

language (between 60.97 and 81.39) were higher than the ones obtained for the Dutch

language (between 49.75 and 77.05) [103].

The best system [22] was based on a 2-step approach where the two steps are

performed sequentially and independently. The first step is fully dedicated to the

detection of the NEs existing within the text, and the second step deals with the clas-

sification of each of the NEs detected in the first step. In both steps the authors have

used an Adaptive Boosting (AdaBoost) [41] approach. The first step is a combination

of three modules:

1. BIO: it tags as “B” the first word of an NE, as “I” a word inside an NE and

the words which are outside the NEs are tagged as “O”.

2. Open-Close&I: it detects the word which opens an NE and the word which

closes it. This approach uses three classifiers: One classifier for the NE openers,

a second classifier for the NE closers and a third one for the words inside the

NE.

3. Global Open-Close: it also uses the classifiers used in “Open-Close&I” to detect

the the words which open an NE and the ones which close it. Thereafter, an

inference mechanism is used to infer the inside word of the NEs

The authors also report that they have used different types of features which include:

POS-tags, lexical features, a context window, trigger words, a gazetteer as an external

resource, etc. Thanks to the combinations of these techniques the system has achieved

the best performance for both the Spanish (81.39) and Dutch (77.05) languages.

The second best participation in CoNLL 2002 [38] is based on a stacking-based

approach which uses three modules using three different algorithms (the output of

each module is passed as input to the next one). The three modules are:
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1. Transformation-Based Learning (TBL): it is an error-driven approach

which starts by assigning a class to each word. Then makes the transformations

that most decrease the number of errors.

2. Sparse Network Of Winnows (Snow): it is also an error-driven approach

but differs from TBL in that the changes to make decrease the errors are made

on the features weights. This second module of the system improves the clas-

sification made by the previous module on the words which present a strong

feature interaction.

3. Forward-Backward algorithm (FB): it is used to compute a global-best

entity type assignment

[38] has obtained the second best results in the Spanish language, also ranked second

in the overall results and third in the Dutch language.

The third best participation was obtained by [27]: the system obtained 77.15

(third best results) for the Spanish language and 72.31 (ranked fifth) for the Dutch

language. The authors have used a bootstrapping approach which consists of extract-

ing all the NEs and the contexts (“seeds”) from the training data first, thereafter these

seeds are stored in character-based tries. An Expectation-Maximization (EM) algo-

rithm is used then to iteratively learn the contextual patterns which are strongly

associated to the seeds. Therefore, more members are added to the tries. This EM-

based bootstrapping algorithm aims at building a large character-based tries for both

NEs (internal evidences) and contexts (external evidences) which would allow a fast

identification and classification of the NEs in the test-set.

CoNLL 2003 The best participation in CoNLL 2003 was the one described in

[39]. The system was an improved version of the system that the authors have used in

the participation of 2002 [38]. The major change in their system was combining the

old system with other classifiers such as HMM, Maximum Entropy (ME) and Robust

Risk Minimization (RRM) [111]. The authors report that they have used a bigger

set of features. In order to combine the classifiers, the authors have used a linear

interpolation of the classifiers which can be expressed by the following equation:
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P (C|w,Cn
1 ) =

n∑
i=1

Pi(C|w, i, Ci).λi(w) (3.5)

where Pi(C|w, i, Ci) is the estimation the the correct class is C, given that the

output of the classifier i on a word w is Ci. Whereas λi(w) is the weight of the

classifier i for the context of the word w. The authors argue that the results for the

English language could benefit (17-21%) more than German. Their final results were

88.76 for English and 72.41 for German, best results in both languages.

In [48] the second best system is described. Their system is fully ME-based (in

Chapter 4 we will describe in detail ME-based NER). Their feature-set contained a

considerable variety of types of features; some of these features are:

• Words occuring in more than 5 documents;

• Unigram and bigram contexts of the NEs;

• Lexical features of both NEs and contexts;

• Words between quotes or brackets;

• Capitalization.

In addition, they have run two experiments: the first one without using any external

resources and the second one using a lexicon as an external resource. For the English

the results using the lexicon (88.12) were almost two points higher than those obtained

without using an external resource (86.83). However, the results were higher when

no external resource was used for German (77.05 vs. 76.83).

Finally, the system of [57] was ranked as the third best participation in CoNLL

2003. Their approach represents data on a character-level HMM as illustrated in

Figure 3.4.

This approach relies heavily on internal evidences of the NEs. For this reason,

the authors made a second run where they used more contextual information. They

report that using context helped to increase the performance more than one point

higher. Their final results for English were 86.07 (third best results) and for German
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Figure 3.4: Character-level HMM. c are the character observation and s are the entity

types

71.9 (second best results) which proved that the approch is highly independent from

the language.

Finally, we would like to remark that 5 of the 16 participations in CoNLL 2003 have

used the ME approach. Additionally, in the same year, the system described in [77]

was one of the first applications using Conditional Random Fields (CRFs) for the

NER task (details about CRFs are given in Chapter 4).

3.3.3 Other Important Research Works

Even though ranked ninth in CoNLL 2002, [74] presents an interesting comparison

between HMM and ME. The author shows that the F-measure obtained with ME

(59.50) is 16 points higher than HMM (43.50). The F-measure increased more than

11 points (72.88) when more features were added. The author argues that when he

used a list of 13,821 first names collected from the web as an external resource the

results slightly decreased (72.44).

More recently, in her thesis dissertation [59], the author has also carried out exper-

iments on NER from a language-independent perspective. The NER system discussed

in this thesis employs a two-step approach where the first one detects the NEs within

the text and the second one classifies them (using the same class-set used in CoNLL).

For each of these two steps, the system uses three classifiers and combines their out-

puts using a voting approach. This voting approach assigns the most voted class

to the token. In case each of the three classifiers has assigned a different class, the

approach selects randomly one of the three outputs as the final class. The three clas-
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sifiers are based on both supervised and unsupervised ML approaches. They use the

same feature-set, however, which consists of:

• Contextual;

• Orthographic: including capitalization, token position in the sentence, etc.;

• Gazetteers;

• Trigger word, e.g. president, capital, etc.

• Morphological: aims mainly at marking the common prefixes and suffixes of the

words.

The gazetteers were extracted automatically using an algorithm based on pattern

validation and graph exploration techniques. When the approach was evaluated on

CoNLL 2002 data-set, it has ranked third in comparison with the participating sys-

tems (F-measure=78.59). However, it has yielded an F-measure of 85 when it was

evaluated on other data-sets (EVALITA-2007).

Finally, in [107] the authors have conducted a comparative study between CRFs

and Support Vector Machines (SVMs) for the Vietnamese NER task. In their study

the authors have used different types of features and internal and external evidences

were taken into consideration. They also report that one of the major problems in

the Vietnamese NER task is the spelling variations of the NEs. For the evaluation

they have manually annotated 500 newspaper articles (156,031 tokens) from different

fields (society, health, sport, politics, etc.). The results showed that SVMs (87.75)

performs better than CRFs (86.48). The authors also report results for SVMs where

they have used different context window sizes. However, they have not used the same

sizes for CRFs. For the Hindi language, in [70] the authors have used CRFs training

and feature induction. They have achieved F-score=82.55. For the Chinese language,

[56] have used CRFs models for both word-segmentation and NER. Even though a

restricted number of features were used, the reported results show that an F-measure

of 83.10 was achieved. [51] report a research work aiming at morphologically rich
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languages in general. They have used the Bengali language as a case-study. In their

work, they have used an affixes induction algorithm and an automatic technique to

extract a Bengali lexicon. They contrast in their evaluation the performance of a

baseline system which uses only lexical features with a system which performs affixes

separation and uses the wikipedia-based lexicon as a feature. Their results show

that they have achieved an F-measure (71.99) is 6.42 points higher than the baseline

system (65.57).

3.3.4 State-of-art of Arabic Named Entity Recognition

Apart from the Arabic NER systems which participated in the ACE evaluations

(of which we do not have any information because the results and the proceedings are

not published), there are few research works which are oriented to the Arabic NER

task. Those works are the following:

1. [73] presents an Arabic NER system which first makes a morphological analysis

and POS-tagging of the text and then a pattern-matching engine is used to

identify and classify the NEs within the text. The list of patterns used for this

purpose is composed of both NE structure patterns and contextual ones. The

authors have considered the same tag-set which has been used in the MUC-6

competition (see 3.2.1). In their paper, the authors report both the performance

of the POS-tagger (F-measure=82) and the NE recognizer (F-measure=85). It

is important to point out that they state that the F-measure obtained for the

categories “NUMBER” and “TIME”, respectively, 97.8 and 85.5.

2. [2] uses an approach which is fully based on “heuristic” rules. However, as the

authors explain, it is not possible to detect the boundaries of the NEs in Arabic

text because of the lack of capital letters. Hence, it is not possible to extract

the NEs with only rules. In order to tackle this problem the following heuristic

was used: if two words appear next to each other in the corpus more than n

times then those words have a “strong relationship” and belong to the same

name phrase. The evaluation was performed on a set of 500 articles of Raya
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newspaper and the authors report an overall precision of 91.9%. The results

details show that the authors aimed at person, organization and location, NEs.

However, no details were given about the corpus annotation.

3. [114] addresses the EDR task as it was defined in the ACE competitions (see 3.2.3).

The authors report that their system performs a first step for MD. Thereafter,

it performs a second step for Coref in order to cluster the entities mentions

which refer to the same object. The system employs an ME-based approach in

both steps. The main subject of the reported work was to show the impact of

using the stem of each word as a feature and measure its impact on the MD

and Coref subtasks for the Arabic language. For this purpose, the authors have

used two different baseline systems: (i) an MD system which uses only lexical

features; and (ii) an MD system which uses lexical and syntactical features,

as well gazetteer information. The authors have used the ACE 2004 corpus

for evaluation, and they report an improvement of 1.1 F-measure points was

achieved for the first baseline system (65.8 vs. 64.7), whereas only 0.4 points of

improvement have been obtained for the second one (69.2 vs. 68.8).

This research work clarifies by emperical results that languages with a complex

morphology, such as Arabic, need an additional effort to tackle the problems

induced by their morphlogy in comparison with other languages such as English.

3.4 Concluding Remarks

The aim of this Ph.D. document is investigating how to approach Arabic NER

in a reliable and efficient way using standard data and comparing the results with

the achieved state-of-art. For this purpose, in this chapter we have investigated the

importance of NER from the perspective of other NLP tasks such as IR and QA,

the different standardizations and the state-of-art of the task. We have described

different aspects showing that:

• From a statistical view point, the NEs represent a huge quantity of information.

In order to provide an empricial proof of this statement, we have conducted an
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experiment which shows that in a text of more than 170k words, NEs ranked

the second most informative words category. Right after the verbs category

which represent the actions in a text.

• NER plays a key role for many NLP tasks. We have reported research works

which have proved that in order to improve the state-of-art of IR and MT, and

mainly to be able to build a QA system, an efficient NER module is necessary.

It is important to have an NER system that considers a tag-set which matches

the needs of the of the global system.

• The definition of the NER task has been consistent in all the NER competitions

and it has been defined as the detection and classification of the NEs existing

with an open-domain text. However, the tag-set taken into consideration and

the measure employed to compare systems performance have varied from com-

petition to competition.

• The state-of-art of the NER task, shows that the MUC-6 and CoNLL 2002 and

2003 competitions are a precious mine of research works oriented to NER. In

the proceedings of these competitions, a considerable variety of techniques have

been explored. They show that the most efficient Machine Learning (ML) tech-

niques for the NER task are ME, SVMs and CRFs. Moreover, some of the most

efficient system have either: (i) employed approaches which are based either on

a 2-step approach in which the first step only detects the boundaries of the NEs

and the second one classifies them; or (ii) combined different ML techniques in

order to benefit from the advantages of different modeling approaches.

• Finally, with respect to the Arabic NER task, it needs to be remarked that

it is very few investigated. The published works have confirmed that due to

its complex morphology, the Arabic language requires a further investigation of

the adequate techniques to tackle the problems induced by its morphology. The

only evaluation campaign which allows the Arabic NLP research community to

compare their approaches on the same Arabic corpus (ACE) does not publish

neither the results nor the proceedings.
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Chapter 4

Statistical Modeling Approaches

for Named Entity Recognition

Consider for example the problem of classifying a vegetable as a member of 5 possi-

ble classes: tomatoes, carrots, zucchinis, onions and pumpkins. If we represent these

classes using the color representation, tomatoes will be identified without ambiguities,

but carrots and pumpkins will be mixed. If we choose instead a shape representation

for all classes, tomatoes and onions could be confused, while pumpkins would be un-

ambiguously identified, and so on. More generally, we can say that for each class there

is at least one representation that captures the best of the “essence” of that class, and

thus makes that class easily recognizable between others.

-Caputo and Niemann (2002)-

61
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In the 17th century, one of the most famous “games of chance” in Paris was a

game called “the points”. It consisted of throwing the dice and counting the number

of points obtained: the winner would be the one who has obtained a certain number

of points first. When, the French writer and philosopher , “Antoine Gombaud”1

had to leave one of his “points” matches unfinished, he found it unfair to receive

the same amount of money as his adversary because he was claiming that he had

more “probabilities” to win2. In order to prove his rightness he asked for the help

of one of the greatest mathematicians at the time, Blaise Pascal3. Gombaud never

suspected that he was giving Pascal the chance to establish the formalism of what will

be one of the greatest theories in the next years and even in the next century, i.e., the

probability theory. In the literature, it is cited that Pascal exchanged a considerable

correspondence with his contemporary mathematician “Pierre de Fermat”4 about this

theory. Both Pascal and Fermat could solve the “problem of points” individually but

more interesting questions were discussed in their correspondence in order to give a

complete mathematical proof to all the concepts involved in the probability theory,

which had been up to that date “intuitive”.

Thomas Bayes5, one of the most famous mathematicians of the 18th century, added a

new concept, called Bayes’ theorem or Bayes’ Law, in the framework of the probability

theory. Bayes’ theorem stands that:

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

Which can be read as: The probability of occurrence of an event “A”, given the

occurrence of some event “B” (P (A|B)), equals the product of the prior probability

of A (P (A)) and the probability of B given A (P (B|A)), divided by the prior of

B (P (B)). That is to say, that studying statistically the probability of appearance

of the event A and B separately and, finally, the probability of appearance of the

event A when given that B already appeared, with Bayes’ theorem it is possible to

1http://en.wikipedia.org/wiki/Antoine Gombaud
2In another version of this story, the name of the gambler is “Gerolamo Cardano” instead of

“Antoine Gombaud”.
3http://en.wikipedia.org/wiki/Blaise Pascal
4http://en.wikipedia.org/wiki/Fermat
5http://en.wikipedia.org/wiki/Thomas Bayes
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compute the probability of that event A “will” happen when B is “observed”. In

other words, one is able to estimate the probability of the occurrence of an event A

based on its historical “data” and its “dependency” to another event B. For instance,

let consider the problem of predicting whether tomorrow will be rainy or not given

that today is a cloudy day. Let also suppose that we have the weather statistics of

the previous year (a 365 days year) which show that last year there have been 130

rainy days, 200 cloudy ones, and 120 rainy days had a cloudy weather the day before.

Intuition would suggest to calculate the probability of having a rainy day tomorrow

as 120/130 ' 92%, whereas the right answer, which can be computed by the Bayes’

Law, is as following:

P (rainytomorrow|cloudytoday) =
P (cloudytoday|rainytomorrow)P (rainyday))

P (cloudyday)

=
(115/130).(130/365)

(200/365)

' 0.92 ∗ 0.35

0.54
' 0.6

In the framework of pattern recognition, the main issue is to determine the prob-

abilities of an object x to belong to each class of a set of n classes ci, where i = 1..n,

given the historical data of x and its features f . The approaches which suggest to

compute this probability by making statistical observations on a number of objects xi

and their features are called “supervised” (or “classification” methods). One of them

is the “Naive Bayes” approach which is based on the Bayes theorem described above.

The Naive Bayes approach considers that the event P (A|B) (see Equation 4.1) can be

read as the probability that x belongs to the class c (event A), given the observation

of a set of features (event B). Hence, in order to be able to use the Bayes theorem (or

any other supervised technique) it is necessary to have a set of objects for whom we

know the class (called “annotated data”) in order to compute the different elements

of the equation (P (A|B), P (A) and P (B)). This step is called in the pattern recog-

nition framework “training”. On the other hand, in order to estimate the accuracy of

our system we need another set of annotated data. The characteristics of the objects

of this set together with the Bayes formula will be used to classify each of the objects,
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whereas the classes annotation will be used to estimate the accuracy of the classifier.

This step is called the “test” step.

The supervised algorithms differ from each other in that they attempt to tackle

the classification problem from different viewpoints. Even though most of these ap-

proaches are claimed to be task-independent, proof is abound in the literature that

the choice of the ML approach, for any task, is a basic and essential step. For instance,

if we consider the case of Naive Bayes classifiers, [92] describes a research study on

using this classifier on different types of problems. In order to carry out this study,

the author has simulated each type of problems with the type of features which tend

to be available. The study shows that a Naive Bayes classifier performs best when

the features are either completely independent or functionally dependent.

We have used the example of Naive Bayes to introduce this chapter because it is sim-

ple and shows better the task of a classifier in general. The rest of the chapter will be

more focused on classification approaches which have been reported in the literature

to be efficient for sequence modeling and NLP tasks in general and for the NER task

in particular. These approaches are: Maximum Entropy (ME), Conditional Ran-

dom Fields (CRFs) and Support Vector Machines (SVMs) whose descriptions and

state-of-art in NLP tasks, with a special focus on the NER task, are presented in

Sections 4.1, 4.2 and 4.3, respectively.

4.1 Maximum Entropy

4.1.1 The Approach

The ME approach has been introduced by E. Jaynes in 1957 in [71]. The author

argues that the priniciple of this approach is an extension of Laplace’s “Principle

of Insufficient Reason” [54]. The aim of this approach is to provide the least biased

possible statistical inference model. For instance, if we have a vegetable v and we

want to classify it as: tomato (T), carrot (C), zucchini (Z), onion (O) or pumpkin

(P) and we do not have any information about v then we assign the same probability

to all the classes and thus our probability distribution will be as the one shown in
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Table 4.1.

Table 4.1: ME model probabilities distribution in case of absence of all information

for a vegetable v

Class Probability

T 0.2

C 0.2

Z 0.2

O 0.2

P 0.2

This probability distribution (see Table 4.1) is the unique distribution for which

the entropy is maximal. Let suppose that we have to re-compute the probability

distribution because a statistical study showed that 60% of the vegetables having

the colour orange are either pumpkins or carrots. And let suppose that v has the

orange colour. In order to keep the maximum entropy we should adopt the following

distribution (see Table 4.2): Hence, every time we have a new information about v

Table 4.2: ME model probability distribution in case we know that the vegetable v

is orange

Class Probability

T 0.13

C 0.3

Z 0.13

O 0.2

P 0.13

we have to look for the, unique, probability distribution which introduces the less
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biases possible and thus provides the maximum entropy. It has been very simple

to re-compute the probability distribution in the example which we have presented

because the example was simple and we have studied the cases of “no information”

and “one information”. When the number of classes (information) is bigger, the

manual computation of the probability distribution becomes much more complex and

an automatic algorithm is necessary. In order to present the solution proposed by

Jaynes in [54] we have to first reformulate our problem as a classification problem.

We have to classify an object xi with i = 1, ..., N as belonging to one of the classes cj

with j = 1, ..,M . We know that xi presents the features fk(xi, cj) with k = 1, ..., F .

These “features functions” (called “features” for short) are the information which

we know about xi. However, even if these information might have not appeared in

the training phase, we still have to rely only on the probability distribution which

provides a maximum entropy to what have been seen in the training phase. In our

research work, we are most of all interested in binary features. Following, we give an

illustrating example of a binary feature, which relies on the example which we have

given in Tables 4.2 and 4.1:

fk(xi, cj) =

1 if cj = P and colour(xi) = orange

0 Otherwise

In [54], it is shown the final formula which describes p(cj|xi) is as follows:

p(cj|xi) = Z(x).exp(
F∑
k=1

λkfk(xi)) (4.2)

where Z(x) is a normalization factor which can be formulated as:

Z(x) =
M∑
j=1

exp(
F∑
k=1

λkfk(xi)) (4.3)

where λk are weights for the features. Therefore, each information has a certain

weight for a certain class and thus the information colour(xi) = orange will have

more weight for the classes P and C than for the other classes. It is possible to

compute the λk using the Generalized Iterative Scaling (GIS) or the limited memory

BFGS (L-BFGS) among other algorithms.
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4.1.2 Maximum Entropy in the framework of Natural Lan-

guage Processing

In this subsection, we present some research works which have used ME models

for NLP tasks. The most important works which use ME models for the NER task

have already been presented in Chapter 3.

To our knowledge, [93] is one of the first applications of ME to the NLP tasks. This

thesis work aimed at building language models for the English language. Three years

later, [89] built a POS-tagger based on the ME approach. The authors used the Wall

Street Journal (WSJ) data for training and testing. Some of the features which have

been employed for the ME model are:

• The current word;

• Prefix and suffix;

• Contains number or a hyphen;

• Contains upper case;

• etc.

The authors report that they have achieved an accuracy of 96.6% which outperforms

the accuracy of the existing POS-taggers. The ME approach was employed also for

building a Base Phrase Chunker [58], the author has used:

• The current word;

• Context (surrounding words);

• POS-tags;

• POS-tags of surrounding words.

as features. The WSJ corpus has been used for both training and evaluation and

the results achieved an F-meausre of 91.97. In [90] the authors use an ME approach

to detect sentence boundaries. Two experiments have been carried out: the former
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one using domain-specific keyword (English financial newspaper) and the second one

is a more generic model oriented to all types of text. In order to train their systems

the authors have used 39,441 sentences from the WSJ articles. For the evaluation,

they have used other WSJ articles for the first experiment and the Brown corpus for

the second one. The authors report that they have used binary features of the tokens

(words) which mark the boundaries of a sentence, some of these sentences are:

• Prefix and suffix;

• Title (Mr., Dr., etc.) or corporation (Corp., S.p.A., etc.) designator;

• Context (left and right word);

• etc.

The domain specific experiment results achieved a 98.8% of accuracy, whereas in the

open-domain texts experiment the obtained accuracy was 98.0%. These results show

that the approach is highly portable and the authors argue that it almost reaches the

state-of-art (99.8%) even though they have not used as much training data as the

system they compare their results with [91].

4.2 Conditional Random Fields

4.2.1 The Approach

CRFs are a generalization of Bayesian Networks (see Appendix A). They are undi-

rected graphs whose mathematical properties are exploited for probabilistic inference.

In [65], they are defined as follows:

Definition. Let G = (V,E) be a graph, where V is the set of vertices and E is

the set of edges, such that Y = (Yv)v∈V , so that Y is indexed by the vertices of

G. Then (X, Y ) is a conditional random field in case, when conditioned on X, the

random variables Yv obey the Markov property with respect to the graph:

p(Yv|X, Yw, w 6= v) = p(Yv|X, Yw, w ∼ v), where w ∼ v means that w and v are
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neighbors in G.

As a logic consequence of a representation based on vertices which are connected by

edges, there will be a composition of cliques. In graph theory, a clique is defined as

a complete sub-graph whose vertices are all adjacent (see Figure 4.1). CRFs define

Figure 4.1: Illustrating example of a CRFs graph. A clique is circled

features across cliques and assign a joint distribution over a label sequence which can

be expressed as following:

pθ(y|x) ∝ exp(
∑
e∈E,k

λkfk(e, y|e, x) +
∑
v∈V,k

µkgk(v, y|v, x)) (4.4)

where x is a data sequence, y is a label sequence, and y|s is the set of components

of y associated to the vertices in a clique S; fk are the edges features and gk are the

vertices features (both fk and gk are given and fixed); λk and µk are the weights for

fk and gk, respectively, and they are computed in the training phase.

The major advantage of CRFs over BNs is that CRFs do not need to consider

Figure 4.2: Illustrating example of the label-bias problem

the conditional independencies: thus instead of taking into consideration only the



Chapter 4: Statistical Modeling Approaches for Named Entity Recognition 70

near past to predict the future, the statistical model takes the whole sequence into

consideration. CRFs also allow to handle multiple interacting features which is not

possible with Hidden Markov Models (HMMs). CRFs also present a major advantage

for solving the label-bias problem with respect to the other approaches. We use the

same example given in [65] to explain the label-bias problem. As shown in Figure 4.2

both states 1 and 4 have only one output. Therefore, if we suppose that the observed

sequence is r o b, the model will assign the same probability to the states 1 and 4

when the character r will be observed. Thereafter, when the second character (i.e.

the character o) will be observed, even though it has been seen in the training by

state 4 and not by 1, both states have to pass all their masses to their only outgoing

transition. Thus, the top and the bottom paths shown in Figure 4.2 are equal (or

slightly different) independently of the observations. CRFs solve the above problem

because the whole sequence is taken into consideration; additionally a sequence is

labeled taking into consideration its neighbour labels.

4.2.2 Conditional Random Fields in the framework of Natu-

ral Language Processing

[98] is a research work which describes how a shallow parser (BP chunker) is built

using a CRFs model. In their research work, the authors have used two methods for

training:

1. The iterative scaling method.

2. The Conjugate-Gradient (CG) method which is an iterative method used to

solve linear and non-linear equations optimization. It relies on the hypothesis

of combining the gradient with the previous direction instead of following the

gradient [101].

The authors have used the CoNLL 2000 corpora (for both training and evaluation),

the annotation scheme used for this corpus was IOB2. In addition to the tokens and

the tags, the corpus contained also the POS-tags. In [86], CRFs have been used for

extracting information from tables. This task is very peculiar because it requires to
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solve both problems of layout and language. The authors define the table extraction

task as the overlap of six sub-tasks:

1. Locate the table;

2. Identify the row positions and types;

3. Identify the column positions and types;

4. Segment the table into cells;

5. Tag the cells as data and headers;

6. Associate data cells with their corresponding headers.

For the first and the second sub-tasks the authors have used CRFs, HMMs and ME

models in order to be able to make a comparison. For the CRFs model the authors

have used two different training approaches: (i) the GIS approach (CRF baseline);

and (ii) CG which we have mentioned previously. Documents were extracted from

http://www.FedStates.gov for both training (5,764 table lines) and test (3,607 table

lines). The obtained results were F-measure=91.8 when the CRFs models were used

whereas F-measure=88.7 was obtained for the ME model and F-measure=64.8 for

the HMMs model.

Another important research work which employs CRFs for IE is described in [61]. The

aim of this research was to build a system which may assist a user to fill a database

fields from raw text or Web files. The authors introduce the Expected Number of User

Actions (ENUA) measure in order to evaluate their system. This measure consists

in counting the number of the user’s actions (e.g. clicks) in order to fill the database

correctly. The results showed that using a CRFs model helps to reduce the ENUA

up to 13.9% whereas a ME model caused an increase of 29.0% of the ENUA.

CRFs models have proved to be very efficient in the biomedical NER task as well [97].

The author has used two categories of features:

1. Lexical: alphanumeric, roman numeral and dash characters;

2. Semantic: A list of semantic domain knowledge rules.



Chapter 4: Statistical Modeling Approaches for Named Entity Recognition 72

In the first experiment the author has used only the lexical features and achieved an

F-measure of 69.8. When both lexical and semantic features were used, the author

reports that an F-measure of 69.5 was incomprehensively obtained. However, it is

also reported that using semantic features, helped to capture a special type of entities

(RNA and CELL-Line) which less appear in the corpus.

As we have mentioned in Chapter 2, the NER task is the research field which most

benefited from the CRFs statistical model. [56], [107] and [70] (see Chapter 2) are all

research works which prove the efficiency of the CRFs model for the NER task. In

all of them, the authors have used the iterative scaling training and report promising

results.

4.3 Support Vector Machines

4.3.1 The Approach

In order to make a correct description of the SVMs approach, a review of the

“Linear Discriminant Functions” (LDFs) is necessary [33]. Let remind that we want

to tackle the following problem.

We know that :

• The objects to classify can only belong to one of M classes;

• Each object is represented by its features vector which belongs to Rd;

• The classification rule is: α : Rd → {1, ...,M}

• The discriminant functions are: ~g : Rd → RM

LDFs propose the following solution:

gy(~x) = wy0 + <~x. ~wy>

= wy0 +
d∑
i=1

wyi
.xi ; 1 ≤ y ≤ M
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where ~wy is the weights vector and wy0 is the threshold weight. Thus, in the sim-

plest case, when M = 2 we obtain two functions g1, g2 : Rd → R and the classification

rule would be as follows:

α(~x) =

1 if g1(~x) > g2(~x)

2 if g2(~x) > g1(~x)
(4.5)

To make it simpler, we define:

g(~x) = g1(~x)− g2(~x) (4.6)

and thus we can say that the classification rule is:

α(~x) =

1 if g(~x) > 0

2 if g(~x) < 0
(4.7)

Since gy(x) is linear, the decision boundary is a hyperplane H : gy(x) = 0. The

Figure 4.3: Illustrating figure of linear hyperplane

orientation of H is determined by ~wy and its location by w0. Figure 4.3 shows an

illustrating example of objects and a boundary decision. Hence, the distance of an

object from the H may be defined as:

r =
g(~x)

||~w||
(4.8)

Therefore, in case of a two classes linearly separable objects, it is easy to tackle the

classification problem by looking, in the training phase, for the the hyperplane which
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best separates the objects of the two classes. The problems becomes more complicated

when M > 2. Instead of having one hyperplane H which separates the objects of two

classes, we have a hyperplane Hi,j for each two classes Ci and Cj (Figure 4.4 gives an

illustrating example). These hyperplanes can be defined as Hi,j : gi(x) = gj(x) and

the distance of x from a hyperplane Hi,j is:

r(x,Hi,j) =
gi(~x)− gj(~x)

|| ~wi − ~wj||
(4.9)

Hence, the generalized equation of g(x) for LDFs is the following:

Figure 4.4: Illustrating figure of linear hyperplane

g(~x) =
d∑
i=1

ai.yi(~x) (4.10)

where a is a d dimensional weight vector and yi(x) are mapping functions from the

d-dimensional x-space to the d̂-dimensional y-space (usually d̂ >> d). The aim is

to map g(~x) to a transformed space where it will be linear. Hence, using LDFs, we

are able to tackle all the classification problems which accept as a solution any of the

functions which are possible to be transformed to a linear one in the y-space. Some

of these functions are:
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• Lineal discriminant functions:

g(~x) = w0 +
∑d

i=1 wi.xi

• Quadratic discriminant functions:

g(~x) = w0 +
∑d

i=1 wi.xi +
∑d

i=1

∑d
j=1 wij.xi.xj

• Polynomial discriminant functions:

g(~x) = w0+
∑d

i=1 wi.xi+
∑d

i=1

∑d
j=1 wij.xi.xj+

∑d
i=1

∑d
j=1

∑d
k=1 wijk.xi.xj.xk

The correct choice of the type of the discriminant function for a certain classification

is predominant. Another important criterion which makes the difference between two

classifiers is the choice of the boundaries between regions. For instance, in Figure 4.5,

even though both H1 and H2 are able to separate the two classes, the former one

has a very small margin with the nearest data point. Consequently, if we use H1 for

classification, the error-rate will be much bigger than using H2. Therefore, it is very

important to look for the hyperplane which maximizes this margin in order to have

a good generalization of the classification problem and minimize the error-rate of the

classifier. The goal for SVMs is to find the optimal hyperplane [109] and for this

Figure 4.5: Two different regions boundaries

reason SVMs are also known as maximum margin classifiers. As we have mentioned
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earlier the hyperplane is H : g(~x) = 0 which also means H : wy0 + <~x. ~wy> = 0.

Therefore, the canonical hyperplane is:

min
1≤i≤n

|<~w.~xi>+ w0| = 1 (4.11)

and thus the distance between the hyperplane and the nearest data point is:

r(x,Hi,j) =
1

||~w||
(4.12)

Therefore, during the training phase the algorithm should look for ~w which allows

to maximize the distance given in Equation 4.12. A maximization of this distance

is a problem of optimization aiming at finding the minimum ||~w||. If we change this

problem by looking for an optimum ~w to minimize 1
2
.||~w||2 we do not alter the solution

and thus the formal description of the optimization problem is:

minimize
1

2
.||~w||2 subject to: ti(w0 +<~x.~w>) ≥ 1, 1 ≤ i ≤ n (4.13)

where ti is the classification function which can be decribed as:

ti =

+1 if w0 +<~x.~w> > 0

−1 if w0 +<~x.~w> < 0
(4.14)

a more compact formulation of these inequalities is:

ti(w0 +<~x.~w>) ≥ 1 (4.15)

The change in the equation from ||~w|| to 1
2
.||~w||2 has been made in order to be

able to use standard Quadratic Programing (QP) optimization algorithm [60]. In

order to find out the final equation for the optimal hyperplane, it is primordial to use

Lagrange multipliers. The general form obtained is:

gsvm(~x) =
∑
~xi∈SV

λ∗i .ti<~xi.~x>+ w∗0 (4.16)

where λ∗i are the Lagrange multipliers and represent the solutions of the optimization

problem; ~xi are the data points which satisfy ti<~xi.~x> + w∗0 = 1 and allow λ∗i 6= 0

solutions. The points for which λ∗i 6= 0 are called “Support Vectors” (SV). Figure 4.6
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Figure 4.6: Linear separating hyperplane. Support Vectors are circled

shows an illustrating example of a linear separable data points: SVs are circled.

SVMs provide also a solution for non-separable cases, i.e., data points of the different

classes which are not linearly separable. In [26], the authors suggest a modification

in the conditions described in the Formula 4.15. The new conditions would introduce

a positive slack ζi, i = 1, ..., n, Figure 4.7 shows an illustrating example. The new

formulation of the modified conditions are as follows:

ti(w0 +<~x.~w>) ≥ 1− ζi ; ζi > 0 ∀i (4.17)

The mapping from data space to features space in SVMs is done by kernels. These

same kernels compute the distance between two data points. For instance, one of

the simplest and most used kernels is the polynomial one. The following example

illustrates the case of a polynomial kernel:

Suppose we have ~x = (<x1, x2, x3>) and ~y = (<y1, y2, y3>);
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Figure 4.7: Non-linearly separable problem with linear hyperplane. Support Vectors

are circled

K(~x, ~y) = <~x. ~wy>
2

= (x1y1 + x2y2 + x3y3)
2

= x2
1y

2
1 + x2

2y
2
2 + x2

3y
2
3 + 2x1y1x2y2 + 2x1y1x3y3 + 2x2y2x3y3

= <Φ(~x).Φ(~y)>

with

Φ(~x) = (x2
1, x

2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3)

Φ(~y) = (y2
1, y

2
2, y

2
3,
√

2y1y2,
√

2y1y3,
√

2y2y3)

Basically, SVMs can handle only two classes. We can use one of two methods in order

to employ SVMs in a multi-class (M > 2) problem:

1. One class vs. all others : Build M classifiers, where each classifier looks for

separating one class from the rest.

2. Pairwise: Build M ∗ (M − 1)/2 classifiers, where each classifier considers only

two classes. The final decision is made by their weighted voting.
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4.3.2 Support Vector Machines in the framework of Natural

Language Processing

In the literature, several research studies show that SVMs are an adequate solution

for many NLP tasks. For instance, in [63] the authors have built a system to identify

BP chunks in English texts. A chunk is a sequence of words which has a proper

meaning and all its constituent words belong to the same category. The BP chunking

task consists of two sub-tasks:

1. Determining the chunks existing within the text.

2. Classifying the identified chunks as one of the possible grammatical categories

such as noun phrases, adjectival phrases, verb phrases, etc.

The reported approach is based on SVMs and performs in two main steps:

1. It performs a SVMs-based parsing of the test data using both backward and for-

ward directions and 4 different annotation schemes which are IOB1, IOB2, IOE1

and IOE2. Table 4.3 shows the difference between these annotation schemes.

2. It combines the results obtained from the different annotation schemes using a

weighted voting method.

In order to evaluate their approach, the authors evaluated their system over standard

data (baseNP-S and baseNP-L data sets6). The results show that their approach

outperform the existing ones by almost 1 point of F-measure.

In [30], a tokenizer, POS-tagger and a BP chunker were built for the Arabic language

employing an SVMs approach. The authors report that they have used the Arabic

Treebank 7 for both training and evaluating their system. For the tokenization task

they have tagged the characters of each word using the IOB2 annotation scheme

(Figure 4.8 shows an illustrating example for the annotation used for tokenization). A

tag-set of twenty four classes has been used for the POS-tagging task, whereas for the

BP chunking the authors used an IOB2 annotation scheme over nine types of phrases.

6ftp://ftp.cis.upenn.edu/pub/chunker
7http://www.ldc.upenn.edu
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Table 4.3: IOB1, IOB2, IOE1 and IOE2 Base Phrase annotation schemes

IOB1 IOB2 IOE1 IOE2

In O O O O

early I B I I

trading I I I E

in O O O O

busy I B I I

Hong I I I I

Kong I I I E

Monday B B I E

, O O O O

gold I B I E

was O O O O

Figure 4.8: Illustrating example of Arabic tokenization characters annotation

The authors report that they have obtained an F-measure of 99.12 for tokenization,

95.49% accuracy for POS-tag and F-measure=92.08 for BP chunking. In both [63]

and [30], the authors have used the polynomial kernel (see subsection 4.3.1).

In [96] the authors have used a SVMs based approach to learn and extract pairs

of bilingual word sequence correspondences from a non-aligned parallel (Japanese-
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English) corpora. The authors report that they have:

1. Made both positive and negative samples for SVMs model training;

2. Converted the training samples into features vectors;

3. Annotated a set of candidate translation pairs for evaluation.

The authors report that they have used different types of features, e.g. neighbour

words, POS-tag, dictionaries, etc. and have chosen a Gaussian kernel for the SVMs

classifier. The Gaussian kernel can be expressed by the following equation:

K(~x, ~y) = exp(−||~x− ~y||
2

2δ2
) (4.18)

The results show that a recall of 81.1% and a precision of 69.0% have been achieved

and the authors argue that their approach is very efficient for translation pairs and

could be employed to significantly reduce the cost for making translation dictionaries.

In [53], a SVMs-based approach has been employed for the NER task. The authors

have used a polynomial kernel in their SVMs classifier and used the IREX8 data-set

for training and evaluation. IREX is a collection of 1,174 articles containing 19,000

NEs where the formal test-set consists of 71 articles containing 1,510 NEs. Data

are tagged using the Start/End annotation scheme (see Table 4.4). Three types of

features have been employed in the experiments:

1. The word itself;

2. POS-tag;

3. Character type.

The authors also conduct a comparative study between SVMs and ME. The results

show that using SVMs (90.03) has lead to obtained results 4 points above ME (86.00).

The authors argue that the results obtained with SVMs are the best results achieved

for the Japanese NER task. In [107] authors have conducted a comparative study

between SVMs and CRFs (see Subsection 4.2.1) for Vietnamese NER. The authors

8http://nlp.cs.nyu.edu/irex/
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Table 4.4: Illustrating example of the Beginning/End annotation example

Start/End

Wolff S-PER

, O

currently O

a O

journalist O

in O

Argentina S-LOC

, O

played O

with O

Del B-PER

Bosque E-PER

in O
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report that they have considered the same classes defined in MUC-6 (see Chapter 3)

and have used context, external gazetteer and lexical features. They have used a

polynomial kernel for the SVMs classifier and the IOB2 annotation scheme. The

results showed that the performance obtained with SVMs (F-measure=87.45) was

almost one point higher than CRFs (F-measure=86.48).

4.4 Concluding Remarks

The main aim of the classification approaches is to infere the class of an object x

having only part of the information about it. In the literature, many research works

have proved that the best classification approach for the NER tasks are: ME, CRFs

and SVMs. These three supervised and discriminative approaches attempt to solve

the classification problem from very different viewpoints:

1. The ME statistical model can be described, generally, as a real world replication

approach. During the training phase, this approach fetches the adequate weight

for each feature. Adequate features weights from an ME perspective means

a weight-set which will help to get a distribution as close as possible to the

distribution observed in the training data. Such a distribution would allow to

perform the classification without any biases or any other reasoning algorithm.

2. CRFs on the other hand, are graphical models and are more oriented to se-

quence labeling: i.e., during the training phase the CRFs take into consideration

both the features of the current object to classify and the neighbour objects.

For this purpose, the CRFs define the cliques within the graph and optimize the

features weights considering all the elements of the clique. This approach has

proved to solve the problem of label-bias which has been reported unsolvable

for other approached such as HMMs and MEMM.

3. SVMs, finally, can be seen as territory markers. SVMs work only for two-

classes problems. When they are given the training data, of the two classes,

and the features, they transform feature vectors to another space and then find
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the best hyperplane which defines the boundary between the two classes. This

hyperplane is the one which has the maximum margin with the nearest data

point. The transformation that we have mentioned before is performed by the

so-called kernels, and hence there are different types of kernels (e.g. quadratic,

polynomial, Gaussian, etc.) and the choice of the right kernel for a specific task

is of predominant importance.

All these approaches have proved to be efficient for NLP tasks such as POS-tagging,

BP chunking, IE and others. For the NER task, there are many research works

which show that all these approaches present an adequate solution. Some research

works such as [107] and [61] present comparative studies among these approaches.

However, to our knowledge, there are no research works which report a comparative

study between these three approaches for the NER task for different feature-sets,

different corpora and type of NEs.

In the next chapters, we present the experiments which we have carried out in order

to define the right statistical modeling approach and the right technique in order to

build an efficient NER system for the Arabic language. Even though, we have used

only Arabic data and some of the features are language-dependent, our experiments

can be very beneficial for the NER research community because we employed mostly

language-independent features. The details about the impact of the different features

and the performance of the different approaches are given.



Chapter 5

A Maximum Entropy based

Approach: 1 and 2 steps

“The distance is nothing; it is only the first step that is difficult.”

- Madame Marie du Deffand -

85
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In the previous chapters, we have presented the study of the needed background

in order to ease the comprehension of our research works which we present in this

chapter, and in the coming three chapters (i.e., Chapter 6, 7 and 8). We have shown

that in order to understand the problem of Arabic NER, it is necessary to study its

three main axes:

1. The Arabic language: The peculiarities of this language show that for any

NLP task, a special attention needs to be paid to its complex morphology and

the lack of capital letters in its scripture. At the same time, a special curiosity

is aroused on how the rich morphology of this language can be used to enhance

the performance for the task in question.

2. The task definition and state-of-art: Some of the research studies (i.e.

[81][44]) that we have presented when we have described the importance of the

NER task for the other NLP tasks, show that the types of NEs taken into

consideration by the NER system should be adapted to the needs of the global

system in order to obtain the optimal performance. Therefore, in order to deal

with the NER task from a general perspective (i.e. not oriented to any NLP task

in special) we had to study the different standard definitions of this task. In all

our experiments, we will use the CoNLL NER task definition (see Section 3.2)

because:

• it encloses the classes defined previously in the MUC-6 (see Section 3.2),

and adds the “Miscellaneous” class for NEs which neither belong to the

class “Person”, “Location” nor to “Organization”.

• the ACE definition EDT task considers all the types of mentions (name,

nominal, pronominal, etc.) of the entities, whereas in our case we are

interested only in the name mentions.

Finally, the state-of art of the NER task in general and the Arabic NER task in

particular (few works have been published treating the latter one) was necessary

to show the statistical modeling approaches and the techniques which have

proved to be efficient to obtain a high performance.
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3. The statistical modeling approaches: The state-of-art of the NER task

has shown that three methods help to model the NER problem: i.e., ME,

CRFs and SVMs. Those three approaches have been employed to obtain high

performance NER systems, even though they tackle the problem from very

different perspectives. Some comparative studies have been carried out among

the three approaches, even if they do not report enough details to satisfy NER

researchers curiosities.

In the current chapter we will describe our first set of experiments which consists

of two ME-based approaches. In the first section, we present the data and features

which we have employed. The obtained results for our first experiment using the

1-step approach are presented in Section 5.2. Section 5.3 will focus on the 2-step

approach which we have adopted in order to improve the performance. Finally, in

Section 5.4 we draw our final conclusions about both experiments.

5.1 The ANERcorp

5.1.1 Data

In order to carry out this first experiment we have built the ANERcorp corpus

[18]. We have considered the same classes which have been used in the CoNLL

competitions (see Chapter 3) and the same annotation scheme, i.e., the IOB2 scheme

(see Chapter 4). Figure 5.1 shows an extract of ANERcorp, more exactly the first ten

tokens of the corpus, which can be translated as: “Frankfurt , the Cars Manufacturing

Union has declared yesterday in Germany that”. All the tokens of ANERcorp were

tagged manually. It consists of a collection of 316 articles which have been manually

retrieved from different web sources (see Table 5.1).

ANERcorp contains 150,286 tokens, the size of vocabulary is 32,114 types, which

makes a ratio of tokens to types of 4.67. The NEs represent 11% of the corpus and

their distribution along the different types is given in Table 5.2.
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Figure 5.1: An extract of ANERcorp

Table 5.1: Ratio of sources used to build ANERcorp

Source Ratio

http://www.aljazeera.net 34.8%

Other newspapers and magazines 17.8%

http://www.raya.com 15.5%

http://ar.wikipedia.org 6.6%

http://www.alalam.ma 5.4%

http://www.ahram.eg.org 5.4%

http://www.alittihad.ae 3.5%

http://www.bbc.co.uk/arabic/ 3.5%

http://arabic.cnn.com 2.8%

http://www.addustour.com 2.8%

http://kassioun.org 1.9%

5.1.2 Features

The features which have been used in this experiment are the following:
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Table 5.2: Ratio of NEs per class

Class Ratio

PERSon 39%

LOCation 30.4%

ORGanization 20.6%

MISCellaneous class 10%

• The word itself : in the pre-training phase (see Figure 5.3), we compute for each

word the number of times that it was assigned each of the classes. Therefore, for

each word we have a frequency table such as the one given in Table 5.3 for the

word union. However, as a feature we use only the class which has the highest

Table 5.3: Number of times each class was assigned to the word union in ANERcorp

Class Frequency

O 35

Person 0

Location 8

Organization 58

Miscellaneous 2

Total 103

frequency, i.e., in the case of the example given in Table 5.3 we would indicate

to the classifier that the current word was mostly assigned in the training phase

the class “Organization”.

• Context unigrams and bigrams : in the pre-training phase, see Figure 5.3, we

compile a list of the words (unigrams) and word-pairs (bigrams) which fre-
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quently appear before NEs of a certain class. Therefore, at the end of the

pre-training process we have a list of a unigrams and bigrams for each class,

with a frequency assigned to each unigram and bigram. For instance the word

“qAl”1 which can be translated as “said”, appears 609 times in the training

corpus. 146 times it appears before an NE of class “Person”. Thereafter, we

have set a frequency threshold for each class in order to transform this feature

to a binary one: i.e., instead of passing the exact frequency of a unigram or a

bigram to the training module, we pass an information specifying whether this

unigram or bigram is above the threshold or not. Table 5.4 shows the threshold

which we have set for each class.

Table 5.4: Unigrams and bigrams frequency thresholds for each class

Class Freq. Threshold

Person 75

Location 140

Organization 50

Miscellaneous 10

• Previous word’s class : Table 5.5 shows the probability of a word of a class ci

(rows) to appear after a word of class cj (columns). Those probabilities are

computed taking into consideration the frequencies of occurence in the training

corpus of ANERcorp: This matrix contains information which would of high

significance for a classifier. For instance, a word of a class I −Xi never comes

after a word of a class I − Xj because the table suggests that it either comes

after the class O, B−Xi or I −Xi. Thus, in the training phase we will provide

each word with the previous class as a feature, whereas in the test phase we will

provide the last predicted class.

1Written in Buckwalter tranliteration
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Table 5.5: Matrix of probabilities of a word of class ci (rows) appears after a word of

class cj (columns)

B-PER B-LOC B-ORG B-MISC I-PERS I-LOC I-ORG I-MISC O

B-PER 0.01 0.01 0 0 0.01 0 0.01 0 0.96

B-LOC 0 0.02 0 0 0 0 0 0 0.98

B-ORG 0 0 0.02 0 0 0 0 0 0.98

B-MISC 0 0 0.015 0.015 0 0 0 0 0.97

I-PERS 0.71 0 0 0 0.29 0 0 0 0

I-LOC 0 0.9 0 0 0 0.1 0 0 0

I-ORG 0 0 0.81 0 0 0 0.19 0 0

I-MISC 0 0 0 0.69 0 0 0 0.31 0

O 0.01 0.02 0.01 0 0.01 0 0.01 0 0.94

• Nationality : this feature is both a contextual and a lexical feature. We mark

nationalities in the input text. Such information is useful for detecting NEs

because they work as precursors to recognizing NEs. For instance, Figure 5.2

shows four examples where an NE is preceeded by a nationality extracted from

ANERcorp.

• Gazetteers : in order to measure the impact of using an external resource we have

manually built NERgazet2 which consists of a collection of three gazetteers:

1. Location Gazetteer : this gazetteer consists of 1,950 names of continents,

countries, cities, rivers and mountains found in the Arabic version of

wikipedia3;

2. Person Gazetteer : this was originally a list of 1,920 complete names of

people found in Wikipedia and other websites. Splitting the names into

2http://www.dsic.upv.es/grupos/nle/downloads.html
3http://ar.wikipedia.org
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Figure 5.2: Four examples of NEs preceeded by a nationality

first names and last names and omitting the repeated names, the list

contains finally 2,309 names;

3. Organizations Gazetteer : the last gazetteer consists of a list of 262 names

of companies, football teams and other organizations.

The following step, consists of tagging in the training and test data the NEs

according to our gazetteers. In order to do so, we go through our gazetteers and

for each element found in the training/test data we tag all its tokens. For the

location and organization gazetteers we tagged only the NEs whose tokens are

found in the training/test data. For instance, if we suppose that “United States

of America” is an element of the location gazetteer and we have the following

two sentences in the training data:

(i) The President of United States of America, declared today ...

(ii) The United Nations World Food Programme (WFP) today began an ...
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However, for the person gazetteer elements we tagged the tokens on the train-

ing/test data even if only part of the gazetteer element is found. For instance,

if we consider that “Michael Jackson” is an element of the person gazetteer and

we have the following sentence in the training data:

... he was reading George Michael latest news ...

The word “Michael” would be tagged as an element of the person gazetteer.

5.2 1-step ME-based Approach

5.2.1 Approach and Tools

Figure 5.3 shows the basic architecture of the first version of our NER system

ANERsys. It consists of two main parts, i.e., training and testing. The training

phase is composed of the following modules:

1. Pre-training : this module starts by making a characters normalization which

consists of converting all the “Alif with Hamza” (all kinds of Hamza’s) to a sim-

ple “Alif”. It is necessary to perform this first step because we have noticed that

in two different documents we can find the same word written in two different

forms, i.e., with two different forms of “Alif”4. Thereafter, a features prepara-

tion is started in order to compute all the necessary uni/bi-gram frequencies,

check the words existing within ANERgazet, etc. (see Subsection 5.1.2).

2. GIS-based model parameters estimations : in other words it is the module which

computes the features weights λi (see Section 4.1). In order to do so, we have

used the YASMET toolkit, which is freely available5. The name of this toolkit

stands for “Yet Another Small MaxEnt Toolkit”; it is developed with the C++

programming language and it requires a special input file format (fully described

4A discussion of the correct form to be used in each case goes out of the scope of our research.
5http://www.fjoch.com/YASMET.html
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Figure 5.3: The basic architecture of the first version of ANERsys

in the documentation webpage6). YASMET is easy to use and efficient to

perform the training of ME models.

3. Format converter : we have included an additional module to perform a con-

version in order to present the features which have been prepared in the first

module in the format required by YASMET.

In the test phase, the aim is to use the parameters obtained in the training phase to

compute the probability of each word to belong to each of the 9 classes cj. Hence,

the following modules are needed:

6http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/YASMET1.txt
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1. Corpus normalization and features preparation: for the same goal as in the

training phase, we need to collect the features of each word wi.

2. ME parameters estimation: this module uses the ME formula which we have

presented in Section 4.1 to compute the probability of wi to each of the classes

cj as a function of fi and λi.

3. We have named max the last module which is a short script which looks for the

class which has obtained the max imal probability and thus assign it to wi.

In order to evaluate the F-measure we have used the same evaluation standard metrics

of precision, recall and F-measure presented in [104]. The CoNLL evaluation metric

is a strict metric that does not assign partial credit. An NE has to be identified as a

whole and correctly classified in order to gain credit. The script which performs the

evaluation is freely available on the downloads webpage7.

5.2.2 Experiments and Results

First of all, we have computed the baseline with the model used in CoNLL (see

Subsection 3.3.2). Thereafter, we have performed two experiments with the features

presented in the Subsection 5.1.2, and the approach presented in 5.2.1. In the first

experiment we have not used any external resources (i.e., ANERgazet was not used).

Whereas in the second one we have included ANERgazet. Table 5.6, 5.7 and 5.8

present the results obtained for the baseline, first and second experiment, respectively.

The baseline model, which is an indicator of the amount of NEs which have been

seen in the training phase, has obtained an F-measure of 43.36. When we have used

the ME model with all the features except external resources we have enhanced the

performance of our system by more than ten points (54.11). Finally, when we have

included ANERgazet, the performance was slightly improved (55.23).

7http://bredt.uib.no/download/conlleval.txt
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Table 5.6: Baseline results

Baseline Precision Recall F-measure

Location 75.71% 76.97% 76.34

Misc 22.91% 34.67% 27.59

Organisation 52.80% 33.14% 40.72

Person 33.84% 14.76% 20.56

Overall 51.39% 37.51% 43.36

Table 5.7: ANERsys results without using external resources

ANERsys Precision Recall F-measure

Location 82.41% 76.90% 79.56

Misc 61.54% 32.65% 42.67

Organisation 45.16% 31.04% 36.79

Person 52.76% 38.44% 44.47

Overall 62.72% 47.58% 54.11

Table 5.8: ANERsys results using external resources

ANERsys Precision Recall F-measure

Location 82.17% 78.42% 80.25

Misc 61.54% 32.65% 42.67

Organisation 45.16% 31.04% 36.79

Person 54.21% 41.01% 46.69

Overall 63.21% 49.04% 55.23
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5.2.3 Discussion

The results tables show that the ME approach and the feature-set which we have

used helped significantly to capture the NEs which have not been seen in the training

phase. However, the major problem, which needs to be tackled in order to enhance

the performance, is the multi-word NEs identification. In order to show more clearly

the great error-rate induced by this problem we have to take a look at the F-measure

obtained for the different classes when a partial credit is assigned, i.e., if a single

token is tagged correctly a credit is gained. Those results are shown in Table 5.9.

Table 5.9: ANERsys results using external resources in case a credit is gained when

a single token of a multi-word NE is tagged correctly

ANERsys Precision Recall F-measure

B-LOC 82.04% 83.79% 82.90

I-LOC 75.93% 51.90% 61.65

B-MISC 73.85% 40.85% 52.60

I-MISC 66.67% 3.53% 6.70

B-ORG 57.95% 38.80% 46.48

I-ORG 69.03% 29.21% 41.05

B-PER 75.73% 55.52% 64.07

I-PER 87.22% 43.33% 57.90

Overall 76.34% 50.68% 60.92

This table shows that the F-measure is considerably lower for the tokens which

are part of an NE but not its first token, i.e., tokens which belong to the classes I−X.

Figure 5.4 shows two examples of multi-word NEs which have been incorrectly tagged

by ANERsys. The underlined tagged tokens represent the correct tagging. Example 1,

which can be translated as “The Tunisian president Zine El Abidine Ben Ali”, shows

that ANERsys was able to capture only two words of the NE: the first one, “Zine”,

appeared right after the word “Tunisian”, i.e., a nationality; the second one, “Ben”,
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very frequently appearing as part of a “Person” NE. However, since the previous

word was misclassified as “O”, the classifier assigned “B-PER” to the word “Ben”.

Example 2, illustrates the example of an organization in the sentence “pointing out

the Kurdistan Labor Party”. The last word of the NE, i.e. “Kurd”, was not captured

because it both was unseen in the training data and appeared in an uncommon

context.

Figure 5.4: Two illustrating examples of ANERsys error in tagging multi-word NEs.

Translation of Example 1:“pointing out the Kurdistan Labor Party”.

Translation of Example 2:“The Tunisian president Zine El Abidine Ben Ali”

5.3 The 2-step Approach

According to the results obtained in the first version of our system, in order to

enhance the performance, we should enhance most of all its recall. This implies to in-

vestigate a method to capture all the tokens of the multi-word NEs, as we have shown

earlier. For this reason, we have chosen to investigate the possibility of separating the

NER task in two sub-tasks [14]. The first one would take care of detecting the NEs

within the text and the second one would include this information as a feature and

classify the detected NEs. In this section, we present the approach which we have
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used to implement this idea. Also , we present the obtained results and a detailed

error-analysis.

5.3.1 Approach and Tools

As we have illustrated in Figure 5.5, the training phase aims at training two

models:

1. A model for detecting the NEs boundaries. In order to make such a model, we

first change the annotations “B-PERS”, “B-LOC”, “B-ORG” and “B-MISC” to

“B-NE” and the annotations “I-PERS”, “I-LOC”, “I-ORG” and “I-MISC” to

“I-NE”. Hence, we will obtain a model trained for only 2 classes, i.e., “B-NE”

and “I-NE”. The data, features and training tool are all identical to the ones

employed in the first version of ANERsys (see Section 5.1).

2. A second model for classifying the NEs. This model uses the “B/I-NE” annota-

tion as a feature. That is equivalent to supposing that we already have an ideal

boundaries detection module and we train a classification model which takes its

output as a feature.

The test phase, has more modules and a more complicated behaviour. As illustrated

in Figure 5.5, the component models in the test phase are the following:

1. POS-tagging : we use a freely available Arabic POS-tagger8 which is trained on

the Arabic Treebank9 [30]. Even though the POS-tagger has a large tags-set, we

will need only the “NNP” (Proper Noun) and “NNPS” (Plural Proper Noun)

tags. Those tags mark the NEs existing within an Arabic text.

2. ME-based boundaries detection: using the boundaries detection ME model which

we have prepared in the training phase.

3. Combination module: once we have the output tagging of both, the POS-tag

and ME based modules, we perform a union of these outupts in order to provide

one single outcome where all the detected NEs are tagged.

8http://www1.cs.columbia.edu/∼mdiab/
9http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004T02
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4. Classification model : it is based on an ME model. It takes at the input both the

raw test file and the NEs boundaries detection performed by the other modules.

Thereafter, it adds the boundaries annotations to the other features which we

have used in the first version of our system (see Section 5.1).

Figure 5.5: The generic architecture of the 2-step ANERsys

5.3.2 Experiments and Results

We have conducted two experiments: in the former one we have used the 2-step

approach, whereas the latter was carried out in order to be able to compare the

performance of our system with another system. For this purpose we have used the

demo version of Siraj (Sakhr) which is available in its webpage10. Table 5.10 and

10http://siraj.sakhr.com/
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Table 5.11 show the results of the 2-step ANERsys and the Siraj (Sakhr) systems,

respectively.

Table 5.10: ANERsys: 2-step approach results

ANERsys Precision Recall F-measure

Location 91.69% 82.23% 86.71

Misc 72.34% 55.74% 62.96

Organisation 47.95% 45.02% 46.43

Person 56.27% 48.56% 52.13

Overall 70.24% 62.08% 65.91

Table 5.11: Siraj (Sakhr) results

ANERsys Precision Recall F-measure

Location 84.79% 67.91% 75.42

Misc 0.00% 0.00% 0.00

Organisation 0.00% 0.00% 0.00

Person 74.66% 55.84% 63.89

Overall 78.95% 46.69% 58.58

The results show that using a 2-step approach helped to obtained an F-score

(65.91) more than 22 points above the baseline (43.36), outperforming the one-step

approach (55.23) by more than 10 points and by 7 points the commercial Arabic NER

system Siraj (58.58).

5.3.3 Discussion

After analyzing the results obtained with the first version of our system, we have

observed that it is necessary to investigate an approach which would help to capture
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the multi-word NEs. Using a 2-step approach proved to be an adequate solution to

tackle this problem and thus enhance the performance of the ANERsys. In order

to make a deeper analysis of the results and have a clearer vision on ANERsys 2.0,

we carried out some further experiments. A first one to evaluate the performance

of the first step of our new approach: i.e., the capacity of the system to delimit

the NEs correctly (see Table 5.12). As for the second one, it aims at evaluating

the exact error rate of the second step. For this purpose, we used a corpus where

the NEs delimitations were taken directly from the manually annotated corpus (see

Table 5.13), i.e. 100% correct boundaries.

Table 5.12: Evaluation of the first step of the system

ANERsys 2.0 Precision Recall F-measure

B-NE 82.61% 72.10% 77.00

I-NE 91.27% 42.30% 57.81

Overall 84.27% 62.89% 72.03

Table 5.13: Evaluation of the second step of the system

ANERsys 2.0 Precision Recall F-measure

Location 93.22% 88.68% 90.90

Misc 94.67% 58.20% 72.08

Organisation 76.89% 65.27% 70.61

Person 75.10% 91.37% 82.44

Overall 83.22% 83.22% 83.22

The results of Table 5.13 show clearly that we need to improve the first step of

our system in order to enhance the performance of the global system. In case the

NEs boundaries detection was ideal, we would achieve an F-score of 83.22. In order
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to do so, further investigation of more statistical modeling approaches and larger

feature-sets is necessary.

5.4 Concluding Remarks

The aim of this chapter is to:

1. Show our first steps towards building an NER system fully oriented to the

Arabic language;

2. Give a detailed description of the employed resources, the experiments and the

obtained results.

As a first experiment we have chosen to build a reliable and efficient Arabic NER

system employing a very intuitive approach, i.e. Maximum Entropy. We have pre-

pared ourselves manually a set of more than 150,000 tokens for training and evaluating

the system. At a first stage, we have chosen a feature-set including contextual and

lexical features. We have also manually built three gazetteers which can be described

as lexicons of people, locations and organizations names. These gazetteers have been

built in order to help measure the impact of using external resources. The obtained

results and the error-analyses have showed that:

1. Using the ME approach with the feature-set which we have mentioned helps to

capture the NEs which have not been seen in the training phase. This statement

is supported by the results in which we have obtained 10 points more than when

the ME approach was used (54.11) and than the baseline (43.36). The baseline

model assigns to a word the class which it has been most frequently assigned

in the training corpus, i.e., it is a good indicator of the amount of NEs which

have been already seen in the training corpus.

2. Using external resources (i.e., gazetteers) has helped to increase slightly the

results to 55.23. However, it is important to notice that the gazetteers which

have been employed in this experiment are very small (see Subsection 5.1.2).
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3. When we evaluated the obtained results considering each word apart, we found

out that the major problem is to capture the multi-word NEs. Therefore, in

order to enhance the performance of our NER system we had to investigate how

to increase the recall of the tokens of the class I − X (i.e. the tokens which

are part of an NE but are not its first one, such as the token States in the NE

United States of America).

In order to tackle the problem of capturing the multi-word NEs, we have inves-

tigated the possibility of dividing the NER task in two sub-tasks: the first one to

detect the NEs existing within the text and the second one to classify them. In order

to implement this approach we have adopted the architecture which we illustrated in

Figure 5.5. The boundaries detection step is the union of the results of two modules:

the first one provides the list of NEs detected by a POS-tagger (trained on the Arabic

Treebank). Whereas the second one provides the list of NEs detected with an ME

model (trained on the ANERcorp with the necessary changes in the annotation). We

have also tagged the ANERcorp test corpus by the demo version of the commercial

system Siraj11 (Sakhr) in order to be able to compare our system with others. The

obtained results may be interpreted as follows:

1. Using the 2-step approach helped to improve the overall results up to 10 points

(65.91) with respect to the 1-step approach. It has also helped to obtain results

which are more than 7 points above the ones of the commercial system Siraj.

2. The evaluation of the the first step of the system (i.e., the boundaries detection

module) shows that this module has a F-measure of 72.03. However, the recall

is only 62.89, consequently the recall of the global system has not been improved

as much as we have expected. On the other hand, the major improvement has

been noticed in the precision.

3. The evaluation of the second module of the system has only been performed by

plugging an ideal boundaries detection module at its input. The overall results

were F-measure=83.22, where both recall and precision were 83.22%. However,

11http://siraj.sakhr.com
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the results table of this evaluation (see Table 5.13) shows that the recall of the

“Miscellaneous” and “Organization” classes are not improved as of the ones of

“Person” and “Location” even when the boundaries detection module is ideal

(F-score=100). This is especially because the two latter ones represent the

69.4% of the NEs in ANERcorp training corpus.

The obtained results and the error-analyses which have shown that the 2-step

approach should be considerably improved (almost perfect) in order to obtain a great

improvement of the global system performance. Even if the first step was perfect,

some classes such as “Miscellaneous” and “Organization” would still be difficult to

capture. Hence, at this point of our research work we have decided to explore another

direction to improve ANERsys. That direction would be using different statistical

modeling approaches with a larger feature-set, increasing the size of ANERcorp and

using other data-sets, if possible standard ones. The next chapter describes how we

concretized these ideas and reports the obtained results.
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Chapter 6

ME, CRFs and SVMs with

Different Data-sets

“Essentially, all models are wrong, but some are useful.”

- George Box -

107
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As we have mentioned in Chapter 2 (see Subsection 2.1.1), one of the impor-

tant characteristics which the Arabic orthography lacks in comparison with other

languages, such as English, is the use of capital letters. Consequently, in the Arabic

language, no special signal is used to distinguish the NEs from the other categories

of words. This characteristic proved to make the NER task much harder for rule-

based approaches [2] (see Subsection 3.3.4 for more details about this research work).

Similarly, our first results (see Chapter 5) using an ME based approach, proved that

the lack of capital letters in the Arabic language can be an obstacle to achieve high

performance for ML approaches as well. Furthermore, this statement was confirmed

when our experiments showed that a much better modeling of the NER problem was

achieved when we performed a NEs boundaries detection step before their classifica-

tion. However, it is important to point out that it is necessary to be able to detect

boundaries with a very high F-measure. More precisely, the results of our study sug-

gest that aiming at reaching an F-measure around 80 by using the 2-step approach,

requires a boundaries detection system with an F-measure around 100 (an F-measure

of 83.22 was obtained for the global NER system when the F-measure of boundaries

detection was 100).

In Chapter 2 where we described the peculiarities of the Arabic language, and we

have also shown that thanks to its agglutinative characteristic, one of the important

peculiarities that other languages such as English lack in comparison with the Arabic

language is a rich morphology. Such a morphology has a whole set of affixes to use

and rules to apply in order to form a word correctly. Thus, studying the impact of

the morphological features on Arabic NER is a key research work to be carried out

in order to complete the exploration which we have started in the previous chapter:

i.e., the exploration of which peculiarities of the Arabic language might be useful for

the NER task. In order to fulfill this need, we have carried out experiments with

a large feature space which includes almost all the possible morphological features.

We have also investigated the impact of each feature individually and performed an

incremental feature selection in order to find out the feature-set which helps to obtain

the best performance.

Another research direction which has been triggered in the previous chapter is the
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investigation of the appropriate ML approach for the Arabic NER task. As we have

described in Chapters 3 and 4, the ML approaches which have proved to be successful

in the NER task are ME, CRFs and SVMs. Using ME with two different techniques,

was the goal of the previous chapter. In this chapter, we use all of the mentioned ML

approaches and we carry out a detailed comparison among them[12][11].

Finally, in order to make the study more robust and to show the reliability of our re-

sults, we validate them on 9 different data-sets. The first data-set is a second version

of the ANERcorp (i.e., the data-set used in the experiments which we presented in

the previous chapter). This second version contains more data and has been reviewed

repeatedly in order to ensure annotation coherence. The rest of data-sets are the

data which have been used in the Automatic Content Extraction (ACE) 2003, 2004

and 2005 evaluations (see Subsection 3.2.3). Even if all these data-sets were (fully

or partially) annotated for NER task, it is important to point out that they come

from different sources (newswire, broadcast news, weblogs and Arabic Treebank) and

together they complete the necessary test-platform to validate both the performance

and the robustness of an NER system.

The rest of this chapter is organized as follows. We first present the feature space

which we have used in Section 6.1. In Section 6.2 we describe the different data-set

which we hause in our experiments. We describe our experiments and show the ob-

tained results in Section 6.3. The obtained results are shown in Section 6.4 and draw

some conlusions in Section 6.5.

6.1 Features

As we have mentioned previously, in the experiments we present in this chapter

we will show the impact of different types of features with different ML approaches

on the performance of an Arabic NER system. The first step to take in order to

conduct such a study is to select a number of features that we want to study. In our

research work, we have selected features of different types. Following we present all

the necessary details about these features:
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Lexical (LEXi): These features define the lexical orthographic nature of the tokens

in the text. The idea behind using these features, is to explore the usefulness of

internal evidences of a token to determine whether it is an NE or not. We define

them as different character n-grams of a token and they are elaborated as follows:

Consider that a word is simply a sequence of characters C1C2C3...Cn−1Cn then the

lexical features would be

• LEX1=C1

• LEX2=C1C2

• LEX3=C1C2C3

• LEX4=Cn

• LEX5 = Cn−1Cn

• LEX6 = Cn−2Cn−1Cn

For instance, if we consider the word “AlErAqy” (in English “The Iraqi”), the lexical

features to be extracted are:

• LEX1= A

• LEX2= Al

• LEX3= AlE

• LEX4= y

• LEX5= qy

• LEX6= Aqy
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Contextual (CXT): This feature may be defined similarly to the “Context uni-

grams and bigrams” and “Previous word’s class” features which we have defined in

the Subsection 5.1.2. However, a broader and more formal definition of this feature

would be as follows: The contextual feature is a window of −/+n tokens and −n tags

from the NE of interest. The main goal of using a −/+n tokens window is to help

the classifier to determine the class of a token by the lexical context in which it ap-

pears, whereas the −n tags is more likely to help by indicating to the classifier which

classes it should not consider in its classification (an example-based and more detailed

illustration of the usefulness of the tags context is given in the Subsection 5.1.2).

Gazetteers (GAZ): The same gazetteers which we have introduced in 5.1.2 have

been used for this feature. Also the way we use them has been kept unchanged.

Morphological features (Mi): This feature-set is based on exploiting the rich

morphology of the Arabic language. We relied on a system for Morphological Anal-

ysis and Disambiguation for Arabic (MADA) to extract relevant morphological fea-

tures [46]. MADA disambiguates words along 14 different morphological dimensions

and yields an accuracy of 95%. MADA typically operates on untokenized texts (sur-

face words as they naturally occur) and provides as an output: (i) the tokenized form

of the text; (ii) the morphological anaylses for each token and their ranking according

to their probability; and (iii) the morphological features of each word. Tables 6.1

and 6.2 show those features (Feat.), give the abbreviation used by MADA to refer to

them (Abv.) and the possible values (Values). The value “NA” (for all the features)

stands for “Not Applicable”; in Tables 6.1 and 6.2 we show for each feature the cases

when it is not applicable (the features are presented in two tables only for a better

readability). A full decription of these features is given in Chapter 2.

In our experiments we have used only 11 of these features. The features which

were ommited are: (i) gender; (ii) idafa1; and (iii) POS-tag. The two first features

were ommited because they are not descriminant for NEs, and the POS-tag because

1In Arabic the Idafa construction is a same syntactical sequence which can be either a possessive
or a genitive contruction depending on the context
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Table 6.1: Desciption of MADA morphological features

Feat. Abv. Values

Article art

YES: token has the definite article attached

NO: token has not the definite article attached

NA: preposition and numbers

Verb Aspect aspect

PV: Perfective

IV: Imperfective

NA: only applicable for verbs

Grammatical case case

ACC: Accusative

GEN: Genitive

NOM: Nominative

NA: only applicable for prepositions and nouns

Clitics clitic

YES: token has a clitic attached

NO: token has not a clitic attached

NA: prepositions and numbers

Conjunction
conj

YES: token has a conjunction attached

NO: token has not a conjunction attached

Definiteness def

YES: token is definite

NO: token is not definite

NA: only applicable for adjevtives and nouns

Gender gen

MASC: Masculine

FEM: Feminine

NA: Not Applicable for prepositions, numbers

we are using another POS-tagger which is more accurate and has a larger tag-set.

Thus, the MADA features which we used in our experiments and the annotations

which we have chosen for them are the following ones:

• M1=article;

• M2=aspect;

• M3=grammatical case;
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Table 6.2: Desciption of MADA morphological features

Feat. Abv. Values

Idafa construction idafa

POSS: possessive

NOPOSS: non possessive

NA: only applicable for nouns and adjectives

Grammatical mood mood

I: Indicative

S: Subjunctive

J: Jussive

NA: only applicable for verbs

Number num

SG: Singular

DU: Dual

PL: Plural

NA: not applicable for prepositions and numbers

Particle part

YES: token has a particle attached

NO: token has not a particle attached

Person per

1: 1st person

2: 2nd person

3: 3rd person

NA: not applicable for prepositions and numbers

POS pos POS tag-set

Voice voice

ACT: Active

PASS: Passive

NA: only applicable for verbs

• M4=clitic;

• M5=conjunction;

• M6=definiteness;

• M7=mood;

• M8=number;
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• M9=particle;

• M10=person; and

• M11=voice.

Part-Of-Speech (POS) tags and Base Phrase Chunks (BPC): To derive

POS-tags and BPC we employ the AMIRA-1.0 system2 described in [31]. Like the

MADA system, AMIRA-1.0 is an SVM-based set of tools. The POS tagger performs

at an accuracy of 96.2% and the BPC system performs at 95.41%. It is worth noting

here that the MADA system produces POS tags however it does not produce BPC,

hence the need for a system such as AMIRA-1.0. The authors report that they have

built the POS-tagger using the Arabic Tree Bank for training and reducing the POS

tag set to 25 tags.

Nationality (NAT): This feature is both a contextual and a lexical feature. We

mark nationalities in the input text. This feature is the same that we have used in

our previous experiments (see Subsection 5.1.2).

Corresponding English Capitalization (CAP): MADA provides the English

translation for the words it morphologically disambiguates as a side effect of running

the morphological disambiguation. In the process it taps into an underlying lexicon

that provides bilingual information. The insight is that if the translation begins with

a capital letter, then it is most probably an NE. Using this feature, will help to

investigate the error-rate induced in the Arabic NER for lacking the capital letters in

its orthography.

6.2 Data

In order to evaluate the different ML approaches and the impact of the features

which we have mentioned in the previous section, we have conducted our experiments

2http://www1.cs.columbia.edu/∼mdiab/software/AMIRA-1.0.tar.gz
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using an enhanced version of our corpus (i.e., ANERcorp) and the data used in

Automatic Content Extraction (ACE) evaluation 2003, 2004 and 2005. The following

subsection gives more details about these data-sets.

6.2.1 ANERcorp 2.0

It is the second version of the corpus which we used in our previous set of experi-

ments (see Section 5.1). In this second version, the same tag-set has been conserved,

however it has more tokens (see Table 6.33) and several rounds of reviews were per-

formed to ensure the consistency of the data.

6.2.2 ACE data

As we have previously mentioned in Subsection 3.2.3, the ACE evaluation consists

of a set of tasks. For our experiments, we are interested only in the corpora which

have been used for the EDT task (see Subsection 3.2.3). In this task, the participants

are asked to extract three types of entities mentions in Arabic texts, namely: Named,

Nominal and Pronominal (see Subsection 3.2.3 for more details). We remind the

reader that the NER task is identical to the detection and classification of “only”

named mentions in the EDR task. Therefore, in order to use the ACE data in our

experiments, we had to perform first a preprocessing step in order to: (i) keep only

the annotation of the named mentions; (ii) change the data format from the LDC

format to the IOB2 annotation scheme (see Subsection 4.3.2).

In the ACE evaluation, the data is separated per genre, i.e. type of the data source.

The genres which have been used in ACE 2003, 2004 and 2005 are the following:

• ACE 2003: Broadcast News (BN) and News Wire (NW);

• ACE 2004: BN, NW and Arabic Treebank (ATB);

3The details about the size of the second version of ANERcorp are shown in the next subsection
in order to allow the reader to easily compare it with the other data-sets which we have used in the
same experiments.
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Corpus genre Sizetrain Sizetest RatioNE NNE Avgspan

ANERcorp 2.0 NW 144.48k 30.28k 11% 12989 1.47

ACE 2003
BN 16.34k 2.51k 14.7% 2100 1.32

NW 29.44k 7k 13.4% 3405 1.43

ACE 2004

BN 50.44k 13.32k 11.5% 4609 1.6

NW 51.74k 13.4k 11.8% 4839 1.6

ATB 21.27k 5.25k 12.6% 2072 1.6

ACE 2005

BN 22.3k 5k 19% 3553 1.46

NW 43.85k 12.3k 15.4% 5697 1.5

WL 18k 3.2k 6.56% 968 1.43

Table 6.3: Characteristics of ANERcorp 2.0 and ACE 2003, 2004 and 2005 data

• ACE 2005: BN, NW and WebLogs (WL).

Table 6.3 shows the average size of the training (Sizetrain) and test (Sizetest) in

number of tokens for each data-set. It also shows the ratio of NEs tokens to the the

total number of tokens (RatioNE), the number of NEs (NNE) and the average number

of tokens per NE (Avgspan) for each corpus. We consider that ANERcorp 2.0 is NW

genre because most of its text was taken from newswire webpages and it does not

include any data of BN or WL.

6.3 Experiments and Results

Our experiments aimed at determining the best feature-set and best ML approach

which can help achieve significant impovement in the NER task. The feature space

we have explored consists of the twenty two features which we have presented in 6.1.

We have also chosen three ML approaches which have proved to be efficient for the

NER task, ME, CRFs and SVMs (see Chapter 4). We carried out two main sets of

experiments. The first set was necessary in order to decide on two parameters which

will be used systematically in the rest of the experiments and dealt with the following



Chapter 6: ME, CRFs and SVMs with Different Data-sets 117

issues: word tokenization (clitic segmentation) and context window. The second set

of experiments consists of an incremental features selection approach which will help

to: (i) determine the feature-set which leads to the best results; (ii) have enough

material to make a deep analysis on the impact on each feature (such analysis would

not have been possible if we had used an automatic feature selection approach). The

following subsections show the necessary details about these two experiment-sets and

the obtained results.

6.3.1 Parameter Setting Experiments

We needed to first establish the impact of two experimental factors on NER per-

formance, namely tokenization and the contextual window size as a preliminary pre-

cursor to our feature engineering experiments. Clitic tokenization, in a highly ag-

glutinative language such as Arabic, has been shown to be useful for many NLP

applications [47]. Intuitively, clitic tokenization serves as a first layer of smoothing

in such sparse high dimensional spaces. We needed to decide on an optimal window

size, therefore we experimented with different sizes. We set the tokenization to the

ATB standard tokenization scheme. In these experiments we investigate window sizes

of −1/ + 1 upto −4/ + 4 tokens/words surrounding a target NE. We carry out the

experiments on the ANERcorp 2.0. Table 6.4 shows the CoNLL results obtained for

the untokenized corpus (UNTOK) and the tokenized corpus (TOK), respectively.

-1/+1 -2/+2 -3/+3 -4/+4

CXT+UNTOK 71.66 67.45 61.73 57.49

CXT+TOK 74.86 72.24 67.71 64

Table 6.4: Parameter setting experiments: Comparison among different window sizes,

and the impact of tokenization on the NER task

From Table 6.4 we note that clitic tokenization has a significant positive impact

on NER. We see an increase of 3 absolute points in F-measure when the text is clitic

tokenized. Moreover, a context size of −1/ + 1 performs the best in this task. In
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fact there seems to be a degrading effect correlated with window size, the bigger the

window, the worse the performance.

6.3.2 Features Engineering

We conduct different sets of experiments to explore the space of possible features.

We use clitic tokenized text and we define the context (CXT) to be −1/ + 1 as

established in the previous section. The rest of our experiments were organized as

following:

1. Step 1: Using only one feature at a time, we carry out an experiment with

three ML appraches and record the impact (F-measure) of each feature.

2. Step 2: We manually ranked each feature according to its impact. If a feature

is assigned different ranks for the different genres, we give it the most frequent

rank. We have performed a manual ranking because the number of impacts to

rank are very reduced, thus the manual ranking is affordable.

3. Step 3: At this stage we evaluate the SVMs, ME and CRFs approaches combin-

ing each time the N -top elements of the ranked features list. We have carried

out experiments starting from N=1 and up to from N=22 to find out the

optimal number of top features in order to obtain the best performance.

6.3.3 Results

Baseline: We have used the CoNLL baseline (see Subsection 5.2.2).

Step 2 results: Table 6.5 shows the final ranking of the features according to their

impact.

Step 3 results: In order to show the F-measure obtained as the N best features

are used together, we show three figures. Figure 6.1 shows the results for the ACE

2003 data, BN genre (best results). Figure 6.2 shows the behavior of the approaches

for the ACE 2004 data, NW genre. Figure 6.3 shows the results obtained with ACE
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Rank Feature Rank Feature

1 POS 12 NAT

2 CAP 13 LEX1

3 M2 14 LEX4

4 M9 15 M3

5 LEX6 16 M8

6 LEX3 17 M6

7 M4 18 LEX2

8 BPC 19 LEX5

9 GAZ 20 M5

10 M1 21 M7

11 M11 22 M10

Table 6.5: Features ranked according to their impact

2005, WL genre (worst results). Finally, Table 6.6 presents the baseline and the best

results obtained for each corpus together with the number of features N and the

approach which was employed. In the same table we also present the results which

were obtained when all the features were combined. We measure the performance

using the F-measure (F ).

6.4 Results Discussion and Error Analysis

Features: All the features we used in our experiments are language-independent

except the morphological ones which were extracted using MADA (Mx). These fea-

tures helped significantly when the approaches are used within a corpus in which the

NEs might occur in very random contexts (i.e. Weblogs genre). Let us consider the

following sentence:

. . . H. Q
�
¯@ ú




	
¯ 	á£ð # H.

Q�
Öß
XC
�
K. ú



æ�ðQË@ ��
ZQË @
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Figure 6.1: Results per approach and number of features for the ACE 2003 (Broadcast

News genre) data

Figure 6.2: Results per approach and number of features for the ACE 2003 (Newswire

genre) data
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Figure 6.3: Results per approach and number of features for the ACE 2005 (Weblogs

genre) data

Corpus genre Baseline Best All Features

SVMs ME CRFs SVMs ME CRFs

N F N F N F F F F

ANERcorp 2.0 NW 31.5 14 81.04 3 77.9 12 80.36 80.4 76.8 79.8

ACE 2003
BN 74.78 15 82.72 3 78.05 15 83.34 82.71 74.84 82.94

NW 69.08 14 79.72 3 74.56 13 79.52 79.21 73.84 79.11

ACE 2004

BN 62.02 16 77.61 2 73.34 13 77.03 76.43 69.44 76.96

NW 52.23 14 74.13 3 68.13 12 74.53 73.4 63.13 73.47

ATB 64.23 15 75.43 2 69.95 13 75.51 75.34 64.66 75.48

ACE 2005

BN 71.06 15 82.02 3 77.67 14 81.87 81.47 75.71 81.1

NW 58.63 15 76.97 3 70.31 13 77.06 76.19 67.41 75.67

WL 27.66 12 55.69 2 44.96 14 53.91 53.81 32.66 51.81

Table 6.6: Best obtained results for each corpus. Best obtained results for each

data-set are in bold characters

which can be written in Buckwalter tranliteration as:

Alr〉ys Alrwsy blAdymyr b# wTn fy Aqrb ...
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which can be translated to English as:

The Russian president Vladimir Putin in the nearest ...

The word “Putin”, which in Arabic is generally spelled as 	á
�
KñK. (bwtn ) was spelled dif-

ferently in that specific text as 	á£ñK.(bwTn). On the other hand, the clitic-segmenter

has mistakenly splitted the first character from the word considering it as the particle

H. which generally means “in”. Thus, the classifier has classified the word as outside

because even if an NE can accept a particle as a suffix, it should be always attached

to the first word of the NE (in case it is a multi-word NE as in our case). When we

have added the MPART feature, MADA has tagged the word 	á£ð (wTn) as a word

which has no particles attached. Consequently, it has been possible for the classifier to

consider that the word 	á£ð # H. (b# w.tn) is the second word of an NE. Other ex-

amples show when the morphological features have been helpful to the classifier when

the words to classify are ambiguous: either because the surface word itself is ambigu-

ous and a morphological disambiguation is needed or because the clitic-segmentation

process has mistakenly spiltted the different components of the word and the result-

ing tokens are both ambiguous to the classifier and their POS-tag is completely wrong.

The performance of our NER system using the CAP feature in isolation has been

ranked second (see Table 6.5) among all the others. This result confirms that the lack

of capitalization in some languages such as Arabic hardens considerably the NER task.

The use of lexical features (LEXi) showed that only remarking the first and last three

characters of a word (LEX3 and LEX6) can be useful for an NER approach. The

rest of the lexical features occur randomly with all the classes and this is seen by the

modeling approaches more as noise than as information. The lexical features have

been mostly useful when the same NE might appear slightly different in the different

parts of the corpus. For instance, in the sentence:

. . .
	

àðPA
�
�

� ÉK
QK
@ ÐY
�
®
�
K
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which might be transliterated as:

tqdm Ayryl $Arwn ...

and translated to English as:

Ariel Sharon presented ...

the name “Ariel” might be tranliterated to Arabic as ÉK
P@ (Aryl) or ÉK
QK
@ (Ayryl).

In the training corpus used for the example which we have presented, this name has

only appeared with the first transliteration. Hence, the classifier has classified it as

outside. When the last trigram of the word was used as a feature (LEX6), it has

helped to indicate to the classifier that the word ÉK
QK
@ (Ayryl) shares the same last

three characters with the word ÉK
P@ (Aryl) which has been frequently seen as a person

in the training data. Another similar example is the NE �
I�ñK.

	á�
�
	
J

�
�@

�
ñË@ (AlwA$n.tn

bwst) “The Washington Post” which appears with the definite article (Al) only once

in the corpus. Consequently, the classifier has been able to classify the word correctly

only when the lexical feature LEX6 was used. On the other hand, the lexical feature

LEX3, which concerns the first three characters of each word, has been mostly useful

for the NE with different suffixes. The most remarkable example of such NEs are

the nationalities which are tagged (depending on the context) as location, person or

outside. Similarly to English the difference between the plural and the singular forms

of most of the nationalities is the suffix, e.g. “Palestinian”, ú



	
æJ
¢��
Ê

	
¯ (flsTyny) vs.

“Palestinians”, 	áK
 ú



	
æJ
¢��
Ê

	
¯ (flsTynyyn). In addition, the Arabic has the dual form

which is very rarely used but also requires only adding a suffix to the singular form.

In our data, we have seen that the LEXi features have been very helpful to capture

those cases.

Incremental Features Selection: The features incremental selection which we have

used in our work helped to obtain results slightly better than using all the features

together. Moreover, it is important to notice that the time to extract, train and test

with only 14 or 15 features is almost half the time necessary for 22 features. Through

the examples of errors which might be corrected when the best feature-set is used,

we have noticed that it is simply because when we use only a selected feature-set,
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we avoid providing the classifier with noisy information. One case is the NE “Holy

Shrine”, which is a facility, that in Arabic is said ú


æ�Y

�
®Ë@ ÐQmÌ'@ (AlHrm Alqdsy) and

has been correctly classified. When information such as the starting bigram (which

is Al, the definite article) has been added, the classifier has mistakenly driven the

classifier to annotate both words as outside.

Approaches: The results obtained with ME were considerably lower than the

ones obtained by CRFs and SVMs especially when the number of features exceeded

6. This shows that the ME approach is much more sensitive to noise and that it

is more suitable to use this approach when a restricted number of accurate features

is used. On the other hand, CRFs and SVMs showed very similar behaviors. Even

though SVMs showed a slightly better performance when only the first 7 top features

were used. Thus, according to our results it is not possible to determine an absolute

superiority of the SVMs or the CRFs for the Arabic NER task. Through the data

we have also observed that even if SVMs and CRFs give different ‘false alarms’ they

tend to miss the same NEs.

Therefore, the choice of one or the other has to be based on the number of available

features and their quality. In order to illustrate the difference among ME on one hand

and SVMs and CRFs on the other, in Figure 6.4 we show four examples of NEs which

have been captured by SVMs and CRFs and missed by ME. The underlined words

are the missed NEs. For each example we give the Buckwalter transliteration and the

English translation.

Classes vs. Features: In Table 6.6 we have shown only the overall F-measure

obtained for each experiment. Table 6.7 shows the F-measure obtained for each

class in order to give an overview on the performance of our system on the different

classes. In this table, we give the results per class (FAC, LOC, PER and ORG)

and we remind the overall F-measure (Overall) obtained when the best feature-set

(Best) and when all the features (All) were used together with the 2003 BN data-

set. The performance for the LOC and PER classes is higher, as it was expected,

than the other classes because the data contains much more tokens of these classes

than other classes NEs. A more interesting observation which might be made on the
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Figure 6.4: Examples of NEs which were missed by the ME-based module and cap-

tured by SVMs and CRFs based ones

Class SV Ms ME CRFs

Best All Best All Best All

FAC 13.33 13.33 23.64 24 13.34 0

LOC 86.66 87.04 83.32 81.29 87.27 87.03

ORG 54.36 51.31 47.56 49.53 51.35 49.12

PER 81.55 81.43 76.16 67.61 82.70 82.83

Overall 82.72 82.71 78.05 74.84 83.34 82.94

Table 6.7: Overall and per class results obtained for the 2003 BN data-set

results presented in Table 6.7 is that when we have selected the feature-set which helps

to get the best performance, we did not achieve the best F-measure for each class

individually. For instance, when the SVMs approach was used together with the best

feature-set the F-measure obtained for the LOC class (86.66) is almost 0.4 points

lower than what we have obtained when all the features were used (87.04). Same

observation can be made on the LOC class when the ME approach was used (83.32

Vs. 81.29) and PER with the CRFs class (82.70 Vs. 82.83). In order to validate this
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observation we propose to carry out another experiment which would allow to show

the performance obtained for each class separately for the 2003 BN data on the CRFs

approach and by selecting each time the best N features. The same ranking which

we have shown on Table 6.5 would be used. Figure 6.5 shows the obtained results

for this experiment. The results shown on Figure 6.5 confirm the feature-set which

Figure 6.5: Per class results when each time the best N features are selected

helps to obtain the best overall performance (83.34 with 15 first features) is not the

best feature-set when each class is considered separately. It also shows that the best

feature-sets are 12, 15, 10 and 22 first features for the FAC, LOC, ORG and PER

classes, respectively. Consequently, by using a feature selection approach based on

the overall F-measure we have lost 3 and 0.13 points for the ORG and PER classes,

respectively. The FAC class proved to be an exception in this case, obtaining either

13.34 or 0 as an F-measure is due to the rarety of the NEs of this class, thus when

the system captures two (out of 15) of these NEs the F-measure is 13.34.

6.5 Concluding Remarks

In order to tackle the problem of achieving a high performance in the Arabic NER

task, it is necessary to explore exhaustively the characteristics of the language and
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determine the ones that are helpful, the ones that are not and the ones that are

obstacles. In this chapter, we have presented a complete study of some of the most

important features for the NER task. Some of these features, such as lexical and

contextual features, are completely language-independent and very easy to extract.

Others such as the POS-tag, BPC and morphological features need special tools to

be extracted, however the study of their impact can be beneficial for all the Semitic

languages NLP research community because they share almost all the morphological

dimensions. Another important variable in our study is the appropriate ML approach

to use. For this purpose, we have used three ML approaches which have proved to be

the most efficient ones for the NER task, namely ME, SVMs and CRFs. Finally, in

order to ensure the relevancy of our experiments and the significance of our results, we

have used 9 data-sets of different genres (newswire, broadcast news, Arabic Treebank

and weblogs) and from different sources (our corpus (i.e., ANERcorp 2.0) and the

ACE 2003, 2004 and 2005 corpora). The most important conclusions which can be

deduced from our study are as follows:

1. Performance: As we have mentioned previously, our best results (F-measure=83.34)

were achieved for ACE 2003 BN data. The results for the BN genre were better

than the other genres across the board. The WL data are the most noisy ones,

because the texts are basically people discussions and thus an NE might ap-

pear in different surface forms and in very different contexts. SVMs and CRFs

showed very similar behaviors and a slight difference in the overall performance,

whereas ME performed very poorly in comparison with them. The performance

using different numbers of features (see Figures 6.1, 6.2 and 6.3) show that when

only few first features are used (∼ 4 features), SVMs always outperforms CRFs.

However, the best performace was obtained by using CRFs.

2. Features: The POS-tags and the capitalization features proved to have a very

high impact on the performance of the NER system. The results obtained

by using only those two features (79.1) with the ACE 2003 BN data yields the

94.9% of the best performance (83.34). Among the first 15 best ranked features,

6 are morphological ones. Those morphological features have been very useful
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to enhance the performance of the system, especially for the WL data where the

classifier decisions relies heavily on the internal evidences of the tokens. The

feature which reflects the impact of using external resources (i.e., GAZ), has

been ranked 9th. This means that using external resources can be very helpful

because the gazetteers which we have used in our experiments are considerably

small (see Subsection 5.1.2).

3. Per Class: Our results show that a very good performance has been obtained,

together with a very good result-set to analyze the different error-types, when

we have used an incremental selection approach. On the other hand, they also

suggest that a selection of the adequate feature-set for each class separately can

lead to a higher performance. Such a feature-selection approach seems to be

necessary especially because in any data-set the frequency of appearence of the

different NEs classes might be drastically different. Consequently, for a class

viewpoint, we use a different training sets sizes for each class and thus different

features should be used for each one.



Chapter 7

A Classifiers Combination

Approach

“None of us is as strong as all of us.”

- an IBM research motto -

129
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In the experiments which we have presented in the previous chapter (see Chap-

ter 6) we have explored a large number of features and ML approaches in order to

find the key elements which could lead us to achieve a high performance in the Arabic

NER task. The results showed clearly that either we use SVMs or CRFs, the perfor-

mance would be approximately the same, whereas the optimization of the feature-set

can be more helpful to enhance it. Using ∼ 15 best features has proved to be more

efficient than using the whole available feature-space (∼ 22). In order to complete

our error-analysis we have added a last experiment which has shown that when we

state that a feature Fi has proved to be the feature with the highest impact on the

NER system, it does not necessarily mean that it is the best feature for each class

“separately”.

This statement remains true when it is seen from a linguistic perspective. For

instance, the tokens which constitute an NE of class Person, e.g. “Glenn Gritzner”,

“Barack Obama” or “Richard Branson”, will always be assigned a POS-tag of type

“NNP”. This makes the POS-tag an important feature for the person class since

it provides very strong signals to the classifier in order to capture the NEs better.

Other NEs classes such as “Organization”, e.g. “’United Nations Organization for

Education, Science, Culture and Communications”, might contain different types of

tokens from a POS-tag viewpoint and thus the classifier would rather rely more on

other features, e.g. use “number” and “gender” to know if different words are part of

the same NE.

In this chapter, we present our experiments which attempt to prove the correctness

of the reasoning which we have just stated. These experiments use a classifier per

class, where each classifier uses the adequate feature-set and ML approach for the

concerned class, and finally the outputs of all the classifiers are combined in one [13].

This approach differs from the one used in [59], which used the same feature-set for

all the classifiers, because it optimizes not only the ML approach but also the feature-

sets. Carrying out those experiments, implies the investigation of the following issues:

1. The impact of each feature individually on each class;

2. An automatic approach to rank the features according to their impact on each
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class;

3. The feature-set which helps to achieve the best performance by using incremen-

tal selection; and

4. A combination strategy which resolves conflicts among classifiers.

In Section 7.1 we present the feature space which will be explored in our experi-

ments and we emphasize the difference with the features which have been used in the

experiments presented in Chapter 6. Section 7.2 describes the Fuzzy Borda Voting

Scheme. This approach have been used in our experiments in order to rank each fea-

ture according to its impact on the classification of each of the NE classes. In order to

optimize the needed time for our experiments and to obtain reliable results, we have

made some modifications on our data-sets. In Section 7.3 we present details about

our data-sets. The experiments and results are presented in Section 7.4. Finally, we

discuss the obtained results in Section 7.5 and we draw our conclusions in Section 8.5.

7.1 Features

The space of features which we have used for the experiments we present in this

chapter are the same as the ones we have introduced in Chapter 6, except some of

the morphological features which we have ommited for their unreliability. The idea

of removing these features came after a discussion with the authors of [46] and the

developpers of the Morphological Analysis and Disambiguation of Arabic (MADA)

tool which we use to extract the morphological features. The authors informed us

that even if the accuracy of extraction of the features is very high, some of them have

a very low F-measure and a better performance of the NER system is expected if

they are removed from the feature-set. Those features are:

1. Mood;

2. Grammatical case; and

3. Voice.
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We have also decided to remove other morphological features because they present

unnecessary information. Following, we present these features and we explain why

they are not necessary:

1. Article: We have another features which indicates if a word is definite or not,

i.e. Definiteness.

2. Clitic: The text we are using is already segmented, thus no word is supposed

to have attached clitics.

3. Conjunction: The conjunction tokens are also segmented from the stem, and

similarly to the “Clitic” feature, no word is supposed to have any attached

conjunctions.

Hence, the remaining morphological features which we have used in our experi-

ments are: (i) aspect; (ii) person; (iii)definiteness; (iv) gender; and (v) number.

Moreover, we have modified the value-set of some of these features in order to

render it more NER task oriented. The value-sets of these feature are as follows:

1. Aspect (MASP ): In Arabic, a verb may be imperfective, perfective or impera-

tive. However, since none of the NEs is verbal, we decided to turn this feature

into a binary feature, namely indicating whether a token is marked for Aspect

(APP, for applicable) or not (NA, for not applicable).

2. Person (MPER): In Arabic, verbs, nouns, and pronouns typically indicate

person information. The possible values are first, second or third person. Again,

similar to aspect, the applicability of this feature to the NEs is more relevant

than the actual value of first versus second, etc. Hence, we converted the values

to APP and NA, where APP applies if the person feature is rendered as first,

second or third.

3. Definiteness (MDEF ): All the NEs by definition are definite. The possible

values are DEF, INDEF or NA.
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4. Gender (MGEN): All nominals in Arabic bear gender information. According

to MADA, the possible values for this feature are masculine (MASC), feminine

(FEM), and neuter (or not applicable NA), which is the case where gender is not

applicable for instance in some of the closed class tokens such as prepositions,

or in the case of verbs. We use the three possible values MASC, FEM and NA,

for this feature. The intuition is that since we are using a sequence model, we

are likely to see agreement in gender information in participants in the same

NE.

5. Number (MNUM): For almost all the tokens categories (verbs, nouns, ad-

jectives, etc.) MADA is able to provide the grammatical number with a high

F-measure. In Arabic, the possible values are singular (SG), dual (DU) and

plural (PL). The correlation of the SG value with most of the NEs classes is

very high. Heeding the underlying agreement of words in Arabic when they are

part of the same NE, the values for this feature are SG, DU, PL and NA (for

cases where number is not applicable such as closed class function words).

7.2 Classic and Fuzzy Borda Voting Scheme

In this section, we describe the approach which we have chosen to rank the different

features acording to their impact. In order to do so, we needed an approach which is

able to deduce a final ranking from several rankings and takes into consideration the

weight assigned to each feature as well, e.g. Fuzzy Borda Voting Scheme (FBVS). This

approach satisfies the conditions which we have mentioned and has been successfuly

used in other NLP tasks such as Geographical Information Retrieval [83] and Word

Sense Disambiguation [20].

7.2.1 Classic Borda Voting Scheme

In some elections, the voters are asked not only to provide the name of the can-

didate they think deserves to win but to give a ranking of all the candidates. There-

after, in order to decide on the final winner, a method is needed to provide a final



Chapter 7: A Classifiers Combination Approach 134

ranking of the candidates from all the rankings receveived from the voters, i.e., The

Classic Borda Voting Scheme (CBVS) (also known as “Borda Count”). The best way

to explain how CBVS works is by providing a clear example such as the following one:

Let us suppose that we had five experts e1 .. e5 who provided a ranking of three

candidates c1, c2 and c3. These rankings are shown in Table 7.1.

e1 e2 e3 e4 e5

c1 c1 c2 c1 c2

c2 c3 c3 c3 c3

c3 c2 c1 c2 c1

Table 7.1: Experts rankings

The first step is to convert, for each expert, the ranking into a “preference” matrix.

This matrix contains simply 0’s and 1’s in order to express if the concerned expert

prefers one candidate to another. Thus, the rankings shown in Table 7.1 would be

transformed in the following matrices:

Me1 =


0 1 1

0 0 1

0 0 0

 , Me2 =


0 1 1

0 0 0

0 1 0

 , Me3 =


0 0 0

1 0 1

1 0 0

 , Me4 =


0 1 1

0 0 0

0 1 0


, Me5 =


0 0 0

1 0 1

1 0 0


For instance, the matrix Me1 can be read as follows:

• It is not possible to express a preference of a candidate to itself⇒ the element

1, 1 of the matrix should contain value 01.

1Through this same example it is possible to show that assiging a value of 1 or 0 to the matrix
diagonal elements does not change the final ranking of the candidates.
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• The ranking of the expert e1 shows a preference of c1 to c2 ⇒ the element

1, 2 (i.e. row 1, column 2) of the matrix should contain value 1.

• The ranking of the expert e1 shows a preference of c1 to c3 ⇒ the element

1, 3 (i.e. row 1, column 3) of the matrix should contain value 1.

• The ranking of the expert e1 shows that c2 is not prefered to c1 ⇒ the element

2, 1 (i.e. row 2, column 1) of the matrix should contain value 0.

• ...

Once all the matrices are derived from the experts ranking, a sum of the element

of each row (i.e., each candidate) of each matrix is calculated. In the case of our

example we obtain the following vectors:

Ve1 =


2

1

0

 , Ve2 =


2

0

1

 , Ve3 =


0

2

1

 , Ve4 =


2

0

1

 , Ve5 =


0

2

1



Therafter, we sum up for each row the elements of all the vectors in order to

obtain one final vector. The following vector is obtained in our case:

Vfinal =


6

5

4


Finally, the candidates are ranked according to the their correspondant element

in Vfinal. Table 7.2 reminds the rankings provided by the experts at the beginning

and shows the final ranking obtained by CBVS.
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e1 e2 e3 e4 e5 CBVS

c1 c1 c2 c1 c2 c1

c2 c3 c3 c3 c3 c2

c3 c2 c1 c2 c1 c3

Table 7.2: Experts rankings and CBVS result ranking

7.2.2 Fuzzy Borda Voting Scheme

Subsection 7.2.1, showed how CBVS is able to deduce from many rankings of

different voters (or experts) a final ranking. It also showed that CBVS is based on

binary values and does not take into consideration the degree of preference of an

candidate ci to a candidate cj for the different experts. For instance, let suppose that

instead of the rankings shown in Table 7.1, the experts have provided both a weight

for each candidate (see Table 7.3). In such a case, we need a more sophisticated

version of CBVS which takes into account the weights provided by the experts, i.e.

FBVS.

e1 e2 e3 e4 e5

c1 : 9 c1 : 9.5 c2 : 9 c1 : 8.5 c2 : 9.5

c2 : 8.5 c3 : 9 c3 : 4 c3 : 8 c3 : 3

c3 : 8 c2 : 8.5 c1 : 2 c2 : 7.5 c1 : 1

Table 7.3: Experts rankings and weights

FBVS performs in a very similar way as CBVS. However, in order to include the

weights in the decision making of the final ranking, some changes were necessary when

the experts preference matrices and vectors (see Subsection 7.2.1) are calculated. In

order to illustrate those changes, we use the example shown in Table 7.3.

According to FBVS, rij,k (the j, k element of the matrix Mei
) may be computed

using the fomula 7.1.
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rij,k =
wij

wij + wik
(7.1)

Me1 =


0.5 0.51 0.53

0.49 0.5 0.51

0.47 0.49 0.5

 , Me2 =


0.5 0.53 0.51

0.47 0.5 0.48

0.49 0.52 0.5

 , Me3 =


0.5 0.18 0.33

0.82 0.5 0.69

0.66 0.31 0.5


, Me4 =


0.5 0.53 0.51

0.47 0.5 0.48

0.49 0.52 0.5

 , Me5 =


0.5 0.1 0.25

0.9 0.5 0.76

0.75 0.24 0.5



Consequently, an important property which can be observed on the produced ma-

trices is: rij,k = 1 − rik,j. Thus, in order to compute the corresponding vectors with

a method which is coherent with the one used in CBVS (see Subsection 7.2.1), we

may sum up only the elements which are > 0.5 (corresponding to the elements = 1

in CBVS) for each row of each matrix2. The resulting vectors are as follows:

Ve1 =


1.04

0.51

0

 , Ve2 =


1.04

0

0.52

 , Ve3 =


0

1.51

0.66

 , Ve4 =


1.04

0

0.52

 , Ve5 =


0

1.66

0.75


Thereafter, we sum up the weights for each row. The final weights are the following:

Vfinal =


3.12

3.68

2.45


Finally, we rank the candidates accrodingly to their correspondant weight in Vfinal.

Hence, the final ranking using FBVS is shown in Table 7.4 together with the rankings

and weights provided by the experts at the beginning.

In the CBVS raking result (see Table 7.2), c1 was ranked first simply because it

2Similarly to CBVS, the final ranking is the same whether we include the diagonal elements in
the sum or not.
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e1 e2 e3 e4 e5 FBVS

c1 : 9 c1 : 9.5 c2 : 9 c1 : 8.5 c2 : 9.5 c2 : 3.68

c2 : 8.5 c3 : 9 c3 : 4 c3 : 8 c3 : 3 c1 : 3.12

c3 : 8 c2 : 8.5 c1 : 2 c2 : 7.5 c1 : 1 c3 : 2.45

Table 7.4: Experts rankings and CBVS result ranking

was the candidate which most times was ranked first by the experts (three times,

whereas c2 was ranked two times as first and c3 zero times). The confidence of the

voters is not taken into consideration at all. Using FBVS, we were able to employ the

voters confidences (i.e. weights). As a result, c2 was ranked first because even though

it was ranked as first candidate only two times, the experts (i.e. voters) assigned

it a very high confidence in comparison with the other candidates. On the other

hand, in all the cases where c1 was ranked first, its confidence was realtively close

to the confidences of the other candidates. Hence, the FBVS is an approach which

combines both frequency and confidence in order to come up with a final ranking of

the candidates.

7.3 Data

As we have previously mentioned, the research study which we present in this

chapter has the goal of finding an optimized feature-set for each NE class. In order

to do so, we will carry out an incremental features selection approach based on the

performance obtained for each feature individually (see Section 7.4). Therefore, if the

measure used to decide on the degree of usefulness of a feature to a certain class is

the F-measure obtained, it is necessary to split the data into three parts:

1. train: the training set;

2. dev: the developement set to measure the impact of the different features;

3. test: the test set which could be used for final test.
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Corpus genre Sizetrain Sizedev Sizetest

ACE 2003
BN 12.41k 4.12k 5.63k

NW 23.85k 9.5k 9.1k

ACE 2004

BN 45.68k 14.44k 14.81k

NW 45.66k 15.2k 16.9k

ATB 19.04k 6.16k 6.08k

ACE 2005

BN 18.54k 5k 8.4k

NW 40.26k 12.5k 13.83k

WL 13.7k 6.2k 6.4

Table 7.5: Statistics of ACE 2003, 2004 and 2005 data

In order to do so, we have used for each genre 3 folds for train, 1 fold for dev

and 1 fold for test. Consequently, the training set is smaller than the one used in the

experiments which we have presented in Chapter 6 and achieving a high performance

becomes very challenging. Table 7.5 shows the average size of the corpora which will

be used in our experiments. We have not used the ANERcorp 2.0 in our experiments

because its size is much bigger than the ACE data and the obtained performance is

very similar to the ACE 2003 BN data (see Table 6.6).

7.4 Experiments and Results

As we have previously mentioned, our objective is to find the optimum set of

features per NE class and then combine the outcome in a global NER system for

Arabic. According to the experiments which we have carried out in Section 6.3.1,

using the tokens context of size −1/ + 1 and tags context window of −1 empirically

yields the best performance. In all the experiments which we present in this section,

we will keep these context windows unchanged. It is also important to mention that

we will only report results for the CRFs and SVMs approaches because ME showed a

very poor performance in comparison to the mentioned approaches (see Section 6.3).
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7.4.1 Training per Individual NE Class

In order to observe the exact impact of each feature on each class we have trained

at each time using only one feature and turning off the other annotations for the other

classes in the training set. We have observed that there are generally two possible

ways in which we can change the data for this purpose. Those two possible settings

are the following:

1. 3-way classification: Setting all the other NE classes (i.e. others than the

concerned class) to O, similar to non-NE words, thereby yielding a 3-way classi-

fication, namely, B-NE for the class of interest, I-NE for the class of interest, and

O for the rest including the rest of the NEs and other words and punctuation;

2. 4-way classification: This second setting discriminated between the other NE

classes that are not of interest and the rest of the words. The intuition in this

case is that NE class words will naturally behave differently than the rest of the

words in the data. Thereby, this setting yields a 4-way classification: B-NE for

class of interest, I-NE for class of interest, NE for the other NE classes, and O

for the other words and punctuation in the data.

Let consider the following sentence:

“John Hennessy the President of Stanford University lives in California”

Three NEs appear in this sentence, namely “John Hennessy” as a person NE,

“Stanford University” as an organization NE and “California” as a location NE. In

the case we want to build a classifier which only focuses on the person NEs, we

have two possible ways in which we can change the annotation of the NEs “Stanford

University” and “California”, i.e., using the 3-way classes annotation or the 4-way

one. Table 7.6 shows the tokens of our example, the initial annotation (Init. annot.),

the 3-way classes annotation (3-way) and the 4-way one (4-way).

In order to contrast the 3-way vs the 4-way classification, we run experiments

using SVMs that we evaluate using the ACE 2003 data set with no features (apart

from ‘CXT’ and ‘current word’) using SVMs. Table 7.7 illustrates the yielded results:
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Tokens Init. annot. 3-way 4-way

John B-PER B-PER B-PER

Hennessy I-PER I-PER I-PER

the O O O

President O O O

of O O O

Stanford B-ORG O B-NE

University I-ORG O I-NE

lives O O O

in O O O

California B-LOC O B-NE

Table 7.6: Illustrating example of the difference between the 3-way and 4-way classes

annotations

Class Num(classes) BN genre NW genre

GPE
3 76.72 79.88

4 76.88 80.99

PER
3 64.34 42.93

4 67.56 44.43

ORG
3 41.73 25.24

4 46.02 37.97

FAC
3 23.33 15.3

4 23.33 18.12

Table 7.7: F-measure Results using 3-way vs. 4-way class annotations using SVMs
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For all the NE classes we note that the 4-way classification yields the best results.

Moreover, we counted the number of ‘conflicts’ obtained for each NE classification. A

‘conflict’ arises when the same token is classified as a different NE class by more than

one classification system (an ML technique together with an NE class); for example,

a classification system may tag a token as a B-GPE while another would tag it as

B-ORG. Our findings are summarized as follows:

• 3 classes: 16 conflicts (8 conflicts in BN and 8 in NW). 10 of these conflicts

happened between GPE and PER classes, and 6 between GPE and ORG classes.

• 4 classes: 10 conflicts (3 conflicts in BN and 7 in NW). 9 of these conflicts

happened between GPE and ORG classes, and only one between GPE and FAC

classes.

An example of a conflict observed using the 3-way classification that disappeared

when we apply the 4-way classification is the sentence shown in Figure 7.1 (transliter-

ated as n$rt SHyfp WA$nTn tAyms tqryrA), which is translated as ‘The Washington

Times newspaper published a report’.

Figure 7.1: Illustrating example for classifiers conflict

When trained using a 3-way classifier, ‘Washington’ is assigned the tag GPE for

the GPE classifier system and as an ORG for the ORG classifier system. However,

when trained using the 4-way classification approach, this conflict is resolved as an

ORG in the ORG classifier system and an NE in the GPE classifier system. Thereby,

confirming our intuition that a 4-way classification is better suited for the individ-

ual NE classification systems. Accordingly, for the rest of the experiments in this

chapter reporting on individual classification systems, we use the 4-way classification

approach.
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7.4.2 Measuring the impact of Individual features per class

with FBVS Ranking

An experiment is run for each fold of the data. We train on data annotated for one

NE class, one ML method (i.e., SVMs or CRFs), and one feature. For each experiment

we use the tuning set for evaluation (i.e., obtaining the F-measure performance value).

After obtaining the F-measures for all the individual features on all the data

genres and using the two ML techniques, we rank the features (in a decreasing order)

according to their impact (F-measure obtained) using FBVS (see Section 7.2.2). This

results in a ranked list of features for each ML approach and data genre per class.

Tables 7.8 and 7.9 show the obtained rankings for SVMs and CRFs, respectively.

7.4.3 Feature set/class Generalization

Once the features are ranked, we incrementally experiment with the features in

the order of the ranking. Thus, we train with the first feature and measure the per-

formance on the tuning data, then we train with the second one together with the

first feature, i.e. the first two features and measure performance, then the first three

features and so on. Thereafter, we select the first n features that yield to the best

performance (after which additional features do not impact performance or cause it

to deteriorate). We use the top n features to tag the test data and compare the

results against the system when it is trained on the whole feature set. Since the total

number of features is 16, each ML classifier is trained and evaluated on the tuning

data 16 times for each genre. The best number of features per class per genre per

ML technique is determined based on the highest obtained F-measure. Finally, the

last step is combining the outputs of the different classifiers for all the classes. In

case of conflict, where the same token is tagged as two different NE classes, we use

a simple heuristic based on the classifier precision for that specific tag, favoring the

tag with the highest precision. Table 7.10 illustrates the obtained results. For each

data set and each genre it shows the F-measure obtained using the best feature set
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Feats PER GPE ORG FAC VEH/WEA

LEX1 16 12 12 15 4

LEX2 3 15 7 12 5

LEX3 10 6 15 10 6

LEX4 7 16 4 8 7

LEX5 15 14 16 16 8

LEX6 12 4 10 9 9

GAZ 14 7 9 11 3

BPC 4 13 13 6 1

POS 1 5 1 4 16

NAT 8 3 2 3 15

MASP 13 2 5 2 10

MPER 11 11 3 5 14

MDEF 9 9 6 7 11

MGEN 5 8 11 13 12

MNUM 6 10 14 14 13

CAP 2 1 8 1 2

Table 7.8: Ranked features according to FBVS using SVMs for each NE class
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Feats PER GPE ORG FAC VEH/WEA

LEX1 6 12 14 1 4

LEX2 2 10 1 16 5

LEX3 5 3 10 5 6

LEX4 7 7 3 15 7

LEX5 3 5 2 6 8

LEX6 10 4 4 7 9

GAZ 9 6 6 11 3

BPC 8 9 8 4 1

POS 1 1 5 14 16

NAT 13 8 7 13 15

MASP 16 15 12 8 10

MPER 11 16 9 12 14

MDEF 12 14 11 9 11

MGEN 15 13 16 10 12

MNUM 14 11 13 3 13

CAP 4 2 15 2 2

Table 7.9: Ranked features according to FBVS using CRFs for each NE class
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and ML approach. We show results for both the dev and test data using the optimal

number of features Best Feat-Set/ML contrasted against the system when using all

16 features per class All Feats/ML. The table also illustrates three baseline results on

the test data only. FreqBaseline: For this baseline, we assign a test token the most

frequent tag observed for it in the training data, if a test token is not observed in the

training data, it is assigned the most frequent tag which is the O tag. MLBaseline:

In this baseline setting, we train an NER system with the full 16 features for all the

NE classes at once. We use the two different ML approaches yielding two baselines:

MLBaselineSVMs and MLBaselineCRFs.

It is important to note the difference between the All Feats/ML setting and the ML-

Baseline setting. In the former: all 16 features are used per class in a 4-way classifier

system and then the classifications are combined and the conflicts are resolved using

our simple heuristic whereas in the latter case of MLBaseline the classes are trained

together with all 16 features for all classes in one system. Since different feature-sets

and different ML approaches are used and combined for each experiment, it is not

possible to present the number of features used in each experiment in Table 7.10.

However, Table 7.11 shows he number of features and the ML approach used for each

genre and NE class.

7.5 Results Discussion and Error Analysis

Performance: As illustrated in Table 7.10, our Best Feat-set/ML setting outper-

forms the baselines and the All Feats {SVM—CRF} settings for all the data genres

and sets for both the test data. Moreover, the Best Feat-set/ML setting outperforms

both All Feats {SVM—CRF} settings for the dev data for all genres.

The results yielded from the ML baselines are comparable across all the data

genres and the two ML approaches.

Comparing the global ML baseline systems against the All Feature Setting, we

see different performances across the different genres and different data-sets where

the ML baseline outperforms the All Feature Setting and vice versa.

Comparing the performance per genre across the different data-sets, we note bet-
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ACE 2003 ACE 2004 ACE 2005

BN NW BN NW ATB BN NW WL

FreqBaseline 73.74 67.61 62.17 51.67 62.94 70.18 57.17 27.66

MLBaselineSVMs 80.58 76.37 74.21 71.11 73.14 79.3 73.9 54.68

MLBaselineCRFs 81.02 76.18 74.67 71.8 73.04 80.13 74.75 55.32

dev

Best Feat-set/ML 83.41 79.11 76.9 72.9 74.82 81.42 76.07 54.49

All Feats. SVMs 81.79 77.99 75.49 71.8 73.71 80.87 75.69 53.73

All Feats. CRFs 81.76 76.6 76.26 71.85 74.19 79.66 74.83 36.11

test

Best Feat-set/ML 83.5 78.9 76.7 72.4 73.5 81.31 75.3 57.3

All Feats. SVMs 81.76 77.27 69.96 71.16 59.23 81.1 72.41 55.58

All Feats. CRFs 81.37 75.89 75.73 72.36 74.21 80.16 74.43 27.36

Table 7.10: Final Results Obtained with selected features contrasted against all fea-

tures combined

BN NW ATB WL

N ML N ML N ML N ML

Person 12 SVM 14 SVM 9 SVM 11 SVM

Location 10 SVM 7 SVM 16 CRF 14 SVM

Organization 9 CRF 6 CRF 10 CRF 12 CRF

Facility 10 CRF 14 CRF 14 SVM 16 CRF

Vehicle 3 SVM 3 SVM 3 SVM 3 SVM

Weapon 3 SVM 3 SVM 3 SVM 3 SVM

Table 7.11: Number of features and ML approach used to obtain the best results
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ter performance across the board for BN data over NW per year. The worst re-

sults are obtained for ACE 2004 data for both BN and NW genres. There is no

definitive conclusion that a specific ML approach is better suited for a specific data

genre. We observe a slightly better performance for the CRFs ML approach in the

MLBaselineCRFs condition for both BN and NW.

The worst performance is yielded for the WL data. This may be attributed to the

small amount of training data available for this genre.

Comparing dev and test performance, we note that the overall results on the dev

data are better than those obtained on the test data. This is somehow expected given

that the weights for the FBVS ranking are derived on the basis of the dev data used

as a tuning set. The only counter example for this trend is with the WL data genre,

where the test data yields a significantly higher performance for all the conditions

except for All Feats CRFs.

Inconsistencies in the data lead to many of the observed errors. The problem is

that the ACE data is annotated primarily for a mention detection task which leads

to the same exact words not being annotated consistently. For instance, the word

’Palestinians’ would sometimes be annotated as a GPE class whereas in similar other

contexts it is not annotated as a named entity at all. Since we did not manually

correct these cases, the classifiers are left with mixed signals.

Features: The quality of the performance of the different feature extraction tools

such as AMIRA (for POS tagging and BPC) and MADA (for the morphological fea-

tures) are optimized for NW data genres. Thereby, yielding suboptimal performance

on the WL genre, leading to more noise than signal for training.

However, comparing relative performance on this genre, we see a significant jump

from the most frequent baseline FreqBaseline (Fβ=1=27.66) to the best baseline

MLBaselineCRFs (Fβ=1=55.32). We see a further significant improvement when the

Best Feat-set/ML setting is applied yielding an Fβ=1=57.3. Interestingly, how-

ever the MLBaselineCRFs yields a much better performance (Fβ=1=55.32) than All
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Feats CRF with an Fβ=1=27.36. This may indicate that a global system that trains

all classes at once using CRFs for sparse data is better than training separate clas-

sifiers and then combining the outputs. It is worth noting the difference between

MLBaselineSVMs and All Feats SVM, F-measure=54.68 and F-measure=55.58,

respectively. This result suggests that SVMs are more robust to less training data as

illustrated in the case of the individual classifiers in the latter setting.

Features vs. Classes: As observed in Tables 7.9 and 7.8, the ranking of the

individual features could be very different for two NE classes. For instance, the BPC

is ranked 4th for the PER class, is ranked 13th for GPE and ORG classes. The

disparity in ranking for the same individual features strongly suggests that using the

same features for all the classes cannot lead to a global optimal classifier.

With regards to morphological features, we note in Table 7.8, that Definiteness,

MDEF , is helpful for all the NE classification systems, by virtue of being included

for all optimal systems for all NE classification systems. Aspect, MASP , is useful

for all classes except PER. Moreover, MGEN and MNUM , corresponding to Gender

and Number, respectively, contributed significantly to the increase in recall for PER

and GPE classes. Finally, the Person feature, MPER contributed mostly to improve

the classification of ORG and FAC classes. Accordingly, observing these results,

contrary to previous ones by [35], our results strongly suggest that significant impact

morphological features have on Arabic NER, if applied at the right level of granularity.

The VEH and WEA classes both exhibit a uniform ranking for all the features

and yield a very low performance. This is mainly attributed to the fact that they

appear very rarely in the training data. For instance, in the ACE 2003, BN genre,

there are 1,707 instances of the class PER, 1,777 of GPE, 103 of ORG, 106 of FAC

and only 4 for WEA and 24 for VEH.

SVMs vs. CRFs Comparing SVMs and CRFs, we note that they both show a

high performance in the Arabic NER task.

However, as illustrated in Table 7.11, SVMs outperformed CRFs on most of the

classes. Interestingly, CRFs tend to model the ORG and FAC entities better than



Chapter 7: A Classifiers Combination Approach 150

SVMs. Hence, it is not possible to give a final word on the superiority of SVMs or

CRFs in the Arabic NER task. In fact, it is necessary to conduct a per class study,

as the one we present in this chapter, in order to determine the right ML approach

and features to use for each class. Our best global NER system combined the results

obtained from both ML approaches.

7.6 Concluding Remarks

In the previous chapter, we have adopted an incremental features selection ap-

proach in order to determine the feature-set which helps obtain the best F-measure

for Arabic NER. However, our error analysis showed that when each NE class is con-

sidered individually the best feature-set might be different.

In this chapter, we have presented the experiment-set which we have used in order

to confirm the previous chapter conclusions. In order to do so, we have:

1. Manually filtered the morphological features used in the previous chapter in

order to keep only the ones which the extraction tool developers report that

they perform at high F-measure;

2. Conducted experiments using at each step one feature and modifying the data

by keeping only one NE class. These experiments helped to show the impact of

each feature for each NE class;

3. Useed the Fuzzy Borda Voting Scheme approach in order to rank the features for

each NE class. The oucome of this ranking shows which features are important

for which class;

4. Performed experiments by selecting at each iteration for each class the n best

features. Thus, the best feature-set for an NE class would be simply the n best

features which helped to obtain the best F-measure.

These experiments have been conducted for both the SVMs and CRFs ML ap-

proaches. We also have splitted our data into training, developement and test sets in
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order to perform the features optimization steps on the development set and obtain

the final results using the test set.

Our best results yielded an F-measure of 83.5 on the ACE 2003 BN data. This re-

sult outperforms the best result obtained in the experiments which we have presented

in the previous chapter (83.34) even though the training data which has been used is

0.75 as much of the ones which have been used in the previous chapter experiments.

Moreover, the most significant conclusions suggested by our experiments are as

follows:

1. When it is needed to build a classifier for only one NE class (e.g. B-PER and

I-PER), a better performance is obtained if the rest of the classes (e.g. B-ORG,

I-ORG, B-FAC ... I-LOC) are turned into a virtual class (e.g. B-NE and I-

NE) than if they are turned into the outside class (i.e., O). In addition, when a

virtual NE class is used it has been observed that there are less conflicts (tokens

tagged as NE by more than one classifier) between the different classifiers. The

intuition behind using this 4-way classification is to avoid that a classifier would

consider some feature signals (e.g. NNP of the POS-tag feature) to be indicators

for the token to be a non-NE.

2. Although SVMs and CRFs did not show a significant difference in the final

results of the previous chapter, the results suggest that those approaches have

shown to be different in many ways. First of all, the features which each of

these approaches have considered to be important for a certain NE class might

be very different. For instance, using the first unigram of a token as a feature

(i.e., LEX1) has been considered to be the least important feature(ranked 16th)

for the PER class by SVMs, whereas CRFs has ranked it as the 6th most impor-

tant feature for that class (see Tables 7.8 and 7.9). However, it is not possible to

explain why exactly one or another feature has been ranked differently for CRFs

and SVMs. It was expected that each of these ML approaches would behave

differently with the different features because as the literature states (see Chap-

ter 3), CRFs assign a weight to each feature and uses those weights afterwards
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for classification. On the other hand, SVMs use mainly the so-called Support

Vectors (SVs), i.e., closest data points to the classes separation hyperplan, in

order to determine the most adequate hyperplane. This characteristic of SVMs

has classified this approach as very robust to noise because it previliges some

data points (i.e., SVs) to others and thus not all the data points are treated

equally as it is the case in ME and CRFs. What our experiments suggest then

is that for some classes, where we have few data points such as ORG and FAC,

all the features and all the data points should be used (i.e., CRFs). Whereas

for others, where we have a considerable amount of data points (i.e., PER and

LOC), it is more adequate to use the most robust ML approach as there are

more chances to have noise (i.e., SVMs).

Apart from the morphological feature which we have used in our experiments,

the rest of the feature-space elements which we have explored are all language-

independent and affordable. Therefore, our experiments show how a significantly

accurate Arabic NER system can be built by using freely available tools and re-

sources. Differently from other comparative studies on the adequate Ml approach

which can be used for the NER task, we have not only reported the best F-measure

obtained but we have also shown the performance of each of the ML approaches by

class and which feature-set is more suitable to be used with each one of them. Finally,

our research study strongly suggests that an accurate Arabic NER system is ought to

use a classifier/class approach where each classifier uses the appropriate feature-set

and ML approach to the concerned class.



Chapter 8

Using Large External Resources

“He who says ’I know!’ is more ignorant than the ignorant; one should always

seek to learn from the others.”

- Ostad Elahi -

153
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8.1 Introduction

The hypotheses which have been stated, the experiments which have been carried

out and the results which have been obtained in the previous chapters have shown

that using a multi-classifier approach helps to achieve a very good performance for

Arabic NER. Our research work has lead to obtain a framework that employs the

best ML approach and feature-set for each NE class. This framework has been used

to carry out a study to show the impact of each feature on Arabic NER. Our results

claim that (see Chapter 7 for more details):

1. POS-tags and capitalization are the features which have the greatest impact in

terms of F-measure;

2. Lexical features are very helpful to capture NEs which tend to appear in dif-

ferent surface forms (e.g. for non-Arabic NEs which have different possible

transliterations), and NEs which appear with different affixes;

3. The rich morphology of the Arabic language could be used to improve the NER

system. In order to do so, it is necessary to use a tool which helps to extract the

morphological features of the Arabic words and the features values are ought

to be changed to fit with the needs of the global systems.

4. The use of gazetteer-based features has proved to be very benificial for all the

NE classes. As shown in Table 7.8, these features has been ranked among the

first eleven ones for all the NE classes even though our gazetteers are very small.

Whereas the three first claims do not suggest any clear directions to expand our

research work, the last one clearly points that it is necessary to use larger amount of

external resources and study their impact on the global NER system.

The idea of using external resources attempts, mainly, to help the NER system

to better capture the NEs which do not appear in the training data (i.e. Out-Of-

Vocabulary NEs). What we have used so far as external resources in our experiments

are manually extracted dictionaries with very reduced size. In this chapter we use a

unsupervised approach which helps to acquire much larger dictionaries from parallel
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aligned corpora. This approach (which we describe with more detailes in Section 8.2)

is based on transferring knowledge about NEs from another language. In order to

do so, we have automatically annotated the English part of a large English-Arabic

aligned parallel corpus with an accurate English NER model. Thereafter, we have

propagated the annotation from the English to the Arabic part and then extracted

different features based on different linguistic motivations. Hence, in addition of being

a continuation of the previous chapters, the study which we present in this chapter

shows similtaneously:

1. How to use an NER model of a source language to enhance a target language

NER model;

2. The impact of three different features extracted from parallel corpora;

3. A detailed discussion of the obtained results and error analysis of the system

outputs.

In order to carry out our experiments we have used the same multi-classifier framework

which we have described in Chapter 7. Apart from building an optimized classifier

for each NE class, this framework has also the advantage of integrating new features

without repeating the experiments for the features which have been already ranked.

Thus, for the new features which we have extracted from the parallel corpus, we just

have to:

1. Measure their impact separately;

2. Find out their ranking among the other features; and

3. Carry out the experiments with incremental selection to find out an optimized

feature-set for each class.

The remainder of this chapter is organized as follows. In Section 8.2 we describe

in details our approach of extracting features from the English-Arabic parallel corpus.

Thereafter, we show the characteristics of the parallel corpora which we have used

and give the obtained results in Section 8.3. We discuss the results and give an error

analysis in Section 8.4 and we finally draw our conclusions in Section 8.5
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8.2 Extracting Feature from Aligned Corpus

As we have previously stated, our purpose is to not only use gazetteers as external

resources but rather extract many features of different types from a parallel corpus

and study closely their impact on the global NER system. The idea behind using an

aligned parallel corpus is basically to be able to use an NER model built on another

language (English in our case). Such a model would be much more accurate since the

English language has a simpler morphology than Arabic, has access to much more

accurate POS-taggers and has much more available enriched semantic resources. The

English NER model which we use in our experiments is originally designed to be

used for the Mention Detection (MD) task (see Chapter 3, Subsection 3.2.3). In our

experiments we keep only the named mentions to reduce the system from MD to

NER. This model is MEMM-based[113]1 and uses a large variety of features which

might be categorized as follows:

• Contextual: which consist of using the current word and a context window of

−/+ 2;

• Syntactical: POS-tags issued from three different POS-taggers and BPCs;

• Classifiers: outcomes of many classifiers which have been trained on other

corpora;

• Semantic: word sense tags using the English WordNet to give the synonyms

and hyperonyms of each word;

More details about the English MD model can be found in [113].

As illustrated in Figure 8.1, the first step consists of extracting necessary features and

running the English NER model on the English side of the parallel corpus, resulting

in a tagged text. Thereafter, we use the word alignment file (parallel data) to project

NEs from English text to Arabic: the alignment file has a one-to-many structure and

describes which words of the English side correspond to which words of the Arabic

1We use the IBM’s NER model.
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one. The result of this step is an annotated Arabic text with NEs obtained by prop-

agation from English.

Figure 8.1: Annotation and projection steps

It is also important to mention that this approach has two major noise sources,

which might have a negative impact on the final results, namely: (i) theEnglish model

errors ; and (ii) Alignment errors : those type of errors are relatively rare when the

data is manually aligned.

8.2.1 Features extraction

Once the corpus in the target language,i.e. Arabic, is tagged with NEs obtained

by propagation, we extract different kinds of features that we use to enhance the

Arabic NER model. Those features are as follows:

1. Gazetteers: we group NEs by class in different dictionaries. During decoding,

when we encounter a token or a sequence of tokens that is part of a dictionary, we

fire its corresponding class; the feature is fired only when we find a complete match

between sequence of tokens in the text and in the dictionary.
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2. n-gram context features: it consists of using the annotated corpus in the target

language to collect n-gram tokens surrounding an NE. We organize those contexts by

NE class and we use them to tag tokens which appear in the same context during

decoding. These tags will be used as additional feature in the NER model. For

instance, if we consider that the person NE 	á�
�k Ð@
�
Y� (SdAm Hsyn - Sadam Husein)

appears in the following sentence:
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@ hQå�

which might be transliterated as:

SrH Ams An SdAm Hsyn ytrAs nZAmA fA$lA

and translated to English as:

declared yesterday that Sadam Husein governs a failed system

the context n-grams that would be extracted are:

. Left n-grams: L1=
	
à



@ (An - that), L2=

	
à



@ �Ó



@ (Ams An - yesterday that), etc.

. Right n-grams: R1=�

�

@Q

�
�K
 (ystrAs - governs), R2= A

�
ÓA

�	
¢

	
� �

�

@Q

�
�K
 (ytrAs nZAmA -

governs a system), etc.

During decoding we fire as a potential person every sequence of tokens (e.g. Ben Ali)

that appears in the same n-gram context as a person in the annotated Arabic data:

preceded by Li or followed by Ri. We proceed similarly for other NE classes.

3. Head-word based features: it considers that the lexical context in which the

NE appeared is the sequence of the parent sub-trees head words in a parse-tree. For

instance, if we consider the sentence which we have used in the previous example, the

corresponding parse tree would be the following:
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· · ·

The first parent sub-tree head word is the verb ‘ytrAs’ (governs), the second one

is ‘An’ (that) and the third one is the verb ‘SrH’ (declared). During decoding, we

fire an information saying that a sequence of token (e.g. John) can be a person if it

appears with the same n first parent sub-tree head words as a person in the annotated

Arabic language data. This is used as additional information in the NER model. The

parse-tree parent head words represent a more global context than the one provided

by the n-grams.

4. Parser-based features: it attempts to use the syntactic environment in

which an NE might appear. In order to do so, for each NE in the target language

corpus we consider only labels of the parent non-terminals. For instance, according to

the parse tree of the example which we have used earlier, for the person ‘SdAm Hsyn’,

the first parent non-terminal label is ‘S’, the second one is ‘SBAR’ and the third one

is ‘VP’. During decoding, we fire as potential person every occurrence of a sequence

of tokens (e.g. Mohamed VI) that appear with the same n first parent non-terminals

labels as a real person in the annotated Arabic data. We proceed similarly for other

NE classes: organization, facility, location, etc.

Gazetteer based features are the most natural and expected kind of features that

one would extract from Arabic text annotated by propagation from English. On the

other hand, n-gram context, head-word based and parse-based features are motivated

by the works of [23, 34] for language modeling. These authors show that building

a language model based on n-grams together with head-word based and parse-based

features led to a considerable reduction on perplexity and an interesting improvement
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on speech recognition system performance.

8.3 Experiments and Results

8.3.1 Parallel Data

Half of the parallel corpus which we have used in our experimens is hand-aligned

by professional annotators at IBM T. J. Watson Center, the other half is publicly

available data at the LDC. The corpus has texts of five different genres, namely:

newswire, news group, broadcast news, broadcast conversation and weblogs. The

Arabic part contains 941,282 tokens, after propagating the annotation from the En-

glish part we obtained 57,290 NEs. Table 8.1 shows the number of NEs for each class.

Table 8.1: Number of NEs per class in the Arabic part of the parallel corpus annotated

by propagation from English

Class Number of NEs

FAC 998

LOC 27,651

ORG 10,572

PER 17,964

VEH 85

WEA 20

8.3.2 Feature Individual Impact

After propagating the annotation from the English to the Arabic side of the paral-

lel corpus and extracted the new features which we have described in Subsection 8.2.1,

we have conducted some experiments, using both SVMs and CRFs, with each of the

extracted features separately in order to measure the impact of each one of them in
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terms of F-measure improvement points. In Table 8.2 we show the obtained results

when no features are used (No Feat.) and when each of the features extracted from

the parallel corpus was used individually. Those features are the following:

1. autoGazet.: automatically extracted gazetteers;

2. L1, L2 and L3: left unigram, bigram and trigram , respectively;

3. R1, R2 and R3: right unigram, bigram and trigram , respectively;

4. HW1, HW2 and HW3: the first, first and second, first, second and third parse-

tree head words, respectively;

5. PB1, PB2 and PB3: the first, first and second, first, second and third parse-tree

parent non-terminals, respectively;

The experiments were carried out using the training and developement sets of the

data-sets which have been used in Chapter 7 (i.e., ACE 2003, 2004 and 2005 data-

sets).

Similarly to the experiments which we have described in Chapter 7, we have per-

formed an incremental selection of the features for each NE class separately. There-

after, we have built a classifier for each NE class which uses the feature-set yielding

the best results together with the most adequate ML approach. Table 8.3 shows the

final results. Similarly to the table of final results in Chapter 7, Table 8.3 shows for

each data set and each genre the F-measure obtained using the best feature set and

ML approach. It shows results for both the dev and test data; using the optimal

number of features Best Feat-Set/ML contrasted against the system when using all

29 features per class All Feats/ML. The table also illustrates three baseline results

on the test data only. FreqBaseline: For this baseline, we assign rach token in the

test data the most frequent tag observed for it in the training data, if a this token is

not observed in the training data, it is assigned the most frequent tag which is the O

tag. MLBaseline: In this baseline setting, we train our NER system with the full 16

features for all the NE classes at once. We use the two different ML approaches yield-

ing two baselines: MLBaselineSVMs and MLBaselineCRFs. As we have mentioned in
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Table 8.2: Individual impact of the features extracted from the hand-aligned parallel

data using SVMs.

ACE 2003 ACE 2004 ACE 2005

BN NW BN NW ATB BN NW WL

No Feat. 70.78 65.34 68.87 60.47 61.61 72.18 62.06 38.69

autoGazet. 72.95 65.4 69.9 59.96 65.43 75.54 63.12 40.38

L1 73.45 65.52 70.76 60.02 66.34 76.67 63.86 45.06

L2 71.81 65.3 69.91 59.56 65.7 75.14 62.56 43.77

L3 71.77 64.82 69.31 59.54 64.22 74.94 61.97 43.5

R1 71.97 64.92 69.53 59.99 65.49 75.03 61.98 44.12

R2 72.06 65.1 70.01 60.0 66.12 75.12 61.96 43.53

R3 72.01 64.93 69.93 59.77 65.98 75.09 62.01 42.19

HW1 72.45 66.11 69.65 59.96 64.55 75.33 62.14 42.94

HW2 71.94 65.73 69.23 59.54 64.65 74.78 62.34 43.78

HW3 71.99 65.82 68.91 59.51 63.76 73.93 61.91 43.60

PB1 76.93 66.39 73.35 60.44 66.9 77.11 62.54 47.69

PB2 75.39 66.13 71.48 60.33 66.01 76.63 63.13 45.69

PB3 74.14 65.65 71.32 59.57 64.7 75.55 62.69 43.68
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Table 8.3: Final results Obtained with selected features contrasted against all features

combined

ACE 2003 ACE 2004 ACE 2005

BN NW BN NW ATB BN NW WL

FreqBaseline 73.74 67.61 62.17 51.67 62.94 70.18 57.17 27.66

MLBaselineSVMs 81.52 76.57 76.33 70.03 73.24 79.64 74.3 55.52

MLBaselineCRFs 81.74 76.79 77.01 71.02 72.93 79.92 74.93 56.70

dev

Best Feat-set/ML 83.93 79.72 78.54 72.8 74.97 81.82 75.92 55.65

All Feats. SVMs 82.32 78.65 77.33 71.75 74.39 81.11 75.73 55.32

All Feats. CRFs 82.55 78.13 77.89 71.92 74.76 79.65 75.01 40.03

test

Best Feat-set/ML 84.32 79.40 78.12 72.13 74.54 81.73 75.67 58.11

All Feats. SVMs 82.45 79.25 76.02 71.45 73.61 81.67 72.66 56.31

All Feats. CRFs 82.38 78.87 77.27 71.76 74.78 80.79 75.06 34.51

the previous chapter, the difference between the All Feats/ML setting and the ML-

Baseline setting consists in that, the former: all 29 features are used per class in a

4-way classifier system and then the classifications are combined and the conflicts are

resolved using our simple heuristic (the token gets the class asigned by the classifier

with the highest precision), whereas in the latter case of MLBaseline the classes are

trained together with all 29 features for all classes in one system.

Since different feature-sets and different ML approaches are used and combined for

each experiment, it is not possible to present the number of features used in each

experiment in Table 8.3. However, Table 8.4 shows the number of features and the

ML approach used for each genre and NE class.

8.4 Results Discussion and Error Analysis

The results presented in Table 8.2 show that the features which we have extracted

from the parallel corpus have been helpful for most of the data-sets. The highest
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Table 8.4: Number of features and ML approach used to obtain the best results

BN NW ATB WL

N ML N ML N ML N ML

Person 20 SVM 21 SVM 17 SVM 24 SVM

Location 19 SVM 15 SVM 26 CRF 24 SVM

Organization 18 CRF 16 CRF 20 CRF 22 CRF

Facility 15 CRF 21 CRF 22 SVM 25 CRF

Vehicle 3 SVM 3 SVM 3 SVM 3 SVM

Weapon 3 SVM 3 SVM 3 SVM 3 SVM

improvements have been obtained for the 2003 BN and 2005 WL data-sets, whereas

no improvement has been obtained for the 2004 NW corpus, for instance. The im-

provement varies significantly from one data-set to another because it highly depends

on the number of NEs which the model has not been able to capture using the con-

textual, lexical, syntactical and morphological features and were correctly tagged in

the parallel corpus.

Impact of the features extracted from the parallel corpus per class:

Similarly to the other features, the new features which we have extracted from the

parallel corpus had different levels of impact for the NE classes. Here we present the

three most important features for each class:

1. FAC: L1, PB2 and autoGaz.;

2. LOC: PB2, L1 and HW1;

3. PER: L1, R3 and HW2;

4. ORG: autoGaz., PB2 and L2; and

5. VEH and WEA: as we have stated in Chapter 7, there are only few VEH and

WEA NEs in the corpus which does not allow to measure properly the impact

of the different features on these classes.
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Weblogs vs. context: In the previous chapter, our results have shown that

the random contexts in which the NEs tend to appear in the WL documents stand

against obtaining a significant improvement. The results which we have obtained

in this chapter confirm this statement because the features which use a more global

context (PBi and HWi) have helped to obtain better results than the ones which we

have obtained using local context (Li and Ri).

Manually and automatically built gazetteers: The former one benefits from

a 100% noise-free items whereas the latter has been extracted automatically and thus

even if the size is significantly larger it contains some noisy elements which resulted

from a wrong annotation of the English model. However, our results have shown that

a model which uses the automatically extracted gazetteers outperforms the manually

built one across the board.

8.5 Concluding Remarks

In this last chapter, we have presented a research study which attempts at propa-

gating knowledge about NEs from another language (i.e., English) in order to enhance

the Arabic NER model. The purpose behind such a research work is to explore the

impact of using large amount of automatically extracted external resources. In order

to do so, we have used a manually aligned English-Arabic parallel corpus of almost

one million words. We have used an accurate Engish MD model to annotate the

English part of the parallel corpus. Thereafter, we have kept only the named men-

tions, that is, we have removed the tags of the nominal and pronominal mentions, and

propagated the obtained annotation to the Arabic part of the parallel corpus using

the alignment information. Finally, we have extracted a number of features for each

of the NEs and have carried out experiments in order to measure the impact of each

one of them.

The obtained results have shown that:

1. A significant improvement has been obtained for almost all the data-sets. For

those where only a slight improvement has been observed (e.g. 2004 NW and
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2005 NW), we have noticed that we have not achieved a significant gain either

because the feature did not fire for the NEs which were not captured when only

contextual, lexical, syntactical and morphological features were used or because

it has mistakenly fired for tokens which are not NEs (i.e., created false alarms);

2. The model which employs automatically extracted gazetteers has yielded better

results than the one using manually built gazetteers; and

3. The performance obtained when a local context feature has been added is lower

than the one obtained when a more global one (based on parse-tree information)

was used for almost all the data-set. The results for the WL data confirm that

one of the main obstacles to obtain a high performance for WL data is that

NEs tend to appear in very random contexts.

Last but not least, our framework which selects and uses the best feature-set and

ML approach for each NE class has proved to be flexible to add additional features

without requiring any adaptation.
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Conclusions

In this document we have presented our achievements in the Arabic Named En-

tity Recognition task. We remind the reader that this task aims at the identification

and classification of the NEs within an open-domain text. An accurate NER system

might be used to enhance the performance in other NLP tasks such as Information

Retrieval [102], Machine Translation [8], Text Clustering [105] and especially Ques-

tion Answering [36][44][81]. For each of these tasks, an NER system is used with the

appropriate class-set in order to preprocess the data and thus provide more informa-

tion to the global system (see Chapter 3). From a ML viewpoint, the NER task is

a sequence classification problem where each word has to be classified as a non-NE

(oftenly called “Outside” words), as the beginning of an NE of class c (tagged as

B − c) or as inside an NE of class c (tagged as I − c). In the literature, researchers

have shown that the supervised approaches are the most adequate ones to tackle the

NER problem. The most successful supervised approaches have been ME, SVMs and

CRFs.

The English NER has been subject of research during many years and a considerable

amount of published works show the obtained results using different ML approaches

and feature-sets. Moreover, many evaluation campaigns such as MUC-6, CoNLL 2002

and 2003 have provided test-beds to the research community in order to encourage

the investigation of novel approaches for the English NER task and allow the partic-

ipants to compare their results. Consequently, the English NER has reached a high

167
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performance which has not been achieved in almost any of the other languages. In this

document, we have presented a research study which concerns mainly Arabic NER.

The Arabic language has its own scripture and inherits the agglutinative character-

istic from the Semitic languages family (see Chapter 2). From the NER viewpoint,

the fact that the Arabic scripture lacks capitalization (i.e., classifiers cannot rely on

a special signal which indicates the existence of an NE) makes the detection of NEs

within the text more challenging than in the languages which support capitaliza-

tion. Its agglutinative peculiarity causes sparseness in the data and this decreases

the quality of training significantly. In brief, these two charactersitics of the Arabic

language, among others, have brought new challenges which need to be addressed

directly. Therefore, language-independent approaches cannot be used to build a high

performance Arabic NER system. Not many research works on the Arabic NER task

have been published. Thus, it was necessary to conduct a full study which:

1. Shows what characteristics of the Arabic language are obstacles to the NER

task, suggests solutions, proves their efficiency by emperical results and at-

tempts to use the rich morphology of the Arabic language in order to enhance

the performance.

2. Conducts a comparative study among the different ML approaches, namely

ME, SVMs and CRFs, and presents them in a beneficial way to the research

community: i.e., reports the obtained performance for each class separately and

shows the difference of behavior of each ML approach.

3. Uses different data-sets of different genres in order to confirm the efficiency and

robustness of the approaches which have helped obtain a high performance.

The main subject of this thesis was to satisfy this need by conducting different

experiment-sets which we have presented in Chapters 5, 6, 7 and 8.
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9.1 Findings and Research Directions

As we have previously mentioned, our experiment-sets have been conducted with

the aim of exploring the different feature-sets and approaches which would help obtain

a high performance NER system. We have carried out our experiments on 9 different

data-sets which cover four genres, namely Newswire, Broadcast News, Weblogs and

Arabic Treebank. In this section, we summarize our major findings wheareas the

details of each experiment can be found in Chapters 5, 6, 7 and 8.

1. Arabic language vs. NER task : In order to tackle the data sparseness problem

caused by the complex morphology of the Arabic language, we have performed

a tokenization preprocessing step which consists in separating the stem word

from the clitics attached to it. Our experiments show that a gain of 3.1 points

might be obtained after performing tokenization. Concerning the lack of cap-

italization in the Arabic language, we have imported capitalization from the

English language by using a lexicon-based translation and using it as a feature.

Imported capitalization has been ranked as the second most important feature

in a set of 22 features (POS-tag is the first one). Almost 3.5 points of F-measure

have been obtained as a gain when the capitalization feature was used. We have

also used the Morphological Analysis and Disambiguation for Arabic (MADA)

tool in order to extract 14 different morphological features for each Arabic word.

This experiment was an attempt to use the Arabic rich morphology in order

to enhance the performance of Arabic NER. Our experiments show that more

gain might be obtained if each of these features is used for the NE class where

it has shown to have the greatest impact: i.e. none of these features has shown

to be striclty efficient or non-efficient for all the classes. Thus, the NER task

might benefit from the rich morphology of the Arabic language if each of the

morphological features is used with the appropriate NE class.

2. Features vs. Performance: In our experiments, we have used lexical, contextual,

syntactical and morphological features. Concerning the contextual ones, we

have first performed a pre-setting experiment where we have explored different
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possible contextual window sizes. Our experiments have shown that a window

of −1/ + 1 yields to the best performance. The syntactical and morphological

features have shown to be the best ones for the NER task in terms of overall

F-measure impact. However, when we have explored the impact of each feature

for each class separately, our observation was that the impact of a feature on

one class might be different from its impact on another one. For instance, The

third most important feature to capture the person NEs was the POS-tag. The

same feature has ranked the fifth most important feature to capture location

NEs. For this reason, we have adopted a multi-classifier approach in which each

classifier deals with only one NE class. For each classifier we have selected the

feature-set which most suits the concerned class. Finally, we have combined the

outputs of the different classifiers in one outcome and the results outperformed

those obtained when the feature-set was optimized using the overall F-measure

even when we have used only 75% as much of the training data which we have

used in the one-classifier approach.

3. ML approaches vs. NE classes : In our experiments, we have used ME, SVMs

and CRFs. The ME approach has proved to behave very poorly in comparison

with the rest of the ML approaches. Whereas SVMs and CRFs have shown that

their behaviors are very similar when the comparison is done on the overall F-

measure level. When the results are compared per class, it has been observed

that CRFs and SVMs might obtain very different results. For instance, the

obtained results when CRFs have been used for NE classes such as organization

and facility have been higher than when the SVMs were used. On the other

hand, SVMs have obtained better results on the rest of the NE classes. Similarly

to the feature-sets, our results have proved that it might not be possible to state

that one ML approach is better than another for the NER task. Thus, the best

results were obtained when we have used a multi-classifier approach where each

classifier uses the best ML technique for the concerned class and combines the

outputs of the different classifiers into a single one.
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4. External knowledge: One of the most important experiments which we have

carried out concerned the study of importing knowledge about NEs from another

language. In order to do so we have used a one-million words English-Arabic

parallel corpus. Our study has shown that the improvement obtained from such

an approach highly depends on the evaluation corpus: that is, the improvement

is much higher when the NEs which were uncorrectly tagged by the baseline

system exist within the Arabic part of the parallel corpus.

9.2 Thesis Contributions

We consider that the major contributions of this thesis can be classified in two

different categories:

I. Contributions to NER in general:

1. We compared the obtained results from different ML approaches, namely, Max-

imum Entopy, Support Vector Machines and Conditional Random Fields. The

comparison has been shown on an overall F-measure level and per class. The

results which we have presented could be very useful as a solid background for

anyone who needs to build an efficient NER system.

2. We have used an incremental approach to optimize the feature-set for each NE

class for a multi-classifier approach. For this purpose, we have explored the

use of the Fuzzy Borda Voting Scheme to rank the features according to their

impact for each NE class. Our results and error analyses show that a very

efficient multi-classifier approach is to select the adequate ML technique and

feature-set for each NE class separately and combine their outcomes at the end.

3. We have conducted one of the first attempts to transfer NER knowledge from

a resource rich language, such as English, to another language, such as Arabic.

In our experiments we extract contextual and parse-tree based features and we

show the obtained impact both when they are used individually and when they

are combined with the other features.
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II. Contributions to Arabic NER:

1. Provide a deep study of the Arabic NER task and show the approaches and

features which help obtain a high performance.

2. Show how the Arabic rich morphology might be employed in order to build a

robust NER system.

3. Build an NER corpus, the ANERcorp, of more than 150k tokens freely available

for the research community1. ANERcorp has been annotated by following the

CoNLL 2003 and 2003 guidelines and has been reviewed several times to ensure

annotation coherence.

4. Build NER models based on SVMs and CRFs ready to be used and freely

available for the research community2. These models can be used in order to

have an Arabic NER system which can be tuned by using the study which we

provide in this document.

9.3 Further Challenges

According to our understanding of the Arabic NER task, the research directions

which might be taken in order to achieve even higher performance are as follows:

1. According to the research work which we have described in Chapter 8, the

obtained improvement when we import knowledge from another language highly

depends on the number of uncorrectly tagged tokens which can be found in the

parallel corpus. One way to increase this number is by using a larger parallel

corpus. However, manually aligned parallel corpora are very costly to build.

A possible research direction would be to use an automatically aligned parallel

corpus. The hardest part would be dealing with all the noise induced by the

uncorrectly aligned segments.

1http://www.dsic.upv.es/grupos/nle/downloads.html
2http://www.dsic.upv.es/grupos/nle/downloads.html
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2. Enrichment of the Arabic WordNet (AWN): The existing AWN offers a complete

platform which allows to be enriched for most of the NLP tasks. If the AWN

is enriched for the NER task, it would allow to explore the impact of using

semantic features for Arabic NER. Such an approach is promising because the

use of synonymy might allow to have more information about the words in the

test set which have not been seen in the training set (OOVs).
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[81] D. Mollá, M. van Zaanen, and D. Smith. Named Entity Recognition for Ques-

tion Answering. In Proc. of the Australasian Language Technology Workshop

Sancta Sophia College, pages 51–58, 2006.

[82] D. Nadeau and S. Sekine. A Survey of Named Entity Recognition and Classi-

fication. Linguisticae Investigationes, 30(7).
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Appendix A

Bayesian Networks

Bayesian Networks are graphical models which encode the probabilistic relation-

ships between a set of variables [55]. A BN is a directed acyclic graph, Figure A.1

shows an illustrating example of a BN. If there is an arrow from a node N1 to another

Figure A.1: Illustrating example of a Bayesian Network: the vegetables case study

node N2, then N1 is a parent of N2 and N2 is a child of N1. For each node (also

187
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referred to as variable) there is conditional probability table. This table defines a

distribution over the values of the associated variable for each joint instantiation of

the parents. Let us employ the same example of the exergue of this chapter. If we

consider that when a vegetable has a round shape and an orange colour is surely a

pumpkin then it is easy to calculate the probability of that a vegetable is a pumpkin

using the BN as follows:

p(pumpkin) = p(orange, round)

= p(round|orange).p(orange)

= 0.4 . 0.6

= 0.24

Hence, if we consider any simple BN a → b → c → d, we may compute P (a|d) with

the following formula:

p(a|d) =
p(a, d)

p(d)

=

∑
b,c p(a, b, c, d)∑
a,b,c p(a, b, c, d)

In order to make an efficient computation of this probability, it is possible to exploit

one of the main characteristics of BNs, i.e., the conditional independencies and thus

equation A.1 can be written as:

P (a|d) =
p(a).

∑
b p(b|a).

∑
c p(c|b)p(d|c)∑

a p(a).
∑

b p(a)p(b|a).
∑

c p(c|b)p(d|c)
(A.1)

However, the main issue of classification is to compute the probability of an object

x belonging to a class c. In order to compute this probability using BNs, there are

methods of inference supposing that some variables are absent or unknown. In the

case of classification, the unknown variables are the classes of the objects. In the liter-

ature, there are many inference methods based on different approaches [99], [84], [69].
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